PyTorch Lightning 1.1 : research: CIFAR100 (ResNeXt)

PyTorch Lightning 1.1: research : CIFAR100 (ResNeXt)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/25/2021 (1.1.x)

* 本ページは以下の CIFAR10 用リソースを参考に CIFAR100 で遂行した実験結果のレポートです:

* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

無料セミナー実施中 クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
  • Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :

人工知能研究開発支援 人工知能研修サービス テレワーク & オンライン授業を支援
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。)

お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/

 

research: CIFAR100 (ResNeXt)

仕様

  • Total params: 9,221,028 (9.2M)
  • Trainable params: 9,221,028
  • Non-trainable params: 0

 
結果

  • ResNeXt29_2x64d
  • {‘test_acc’: 0.7299000024795532, ‘test_loss’: 1.0691789388656616}
  • 100 エポック ; Wall time: 3h 51min 18s
  • Tesla T4
  • ReduceLROnPlateau

 

CIFAR 100 DM

from typing import Any, Callable, Optional, Sequence, Union
 
from pl_bolts.datamodules.vision_datamodule import VisionDataModule
#from pl_bolts.datasets import TrialCIFAR10
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pl_bolts.utils import _TORCHVISION_AVAILABLE
from pl_bolts.utils.warnings import warn_missing_pkg
 
if _TORCHVISION_AVAILABLE:
    from torchvision import transforms
    #from torchvision import transforms as transform_lib
    from torchvision.datasets import CIFAR100
else:  # pragma: no cover
    warn_missing_pkg('torchvision')
    CIFAR100 = None
def cifar100_normalization():
    if not _TORCHVISION_AVAILABLE:  # pragma: no cover
        raise ModuleNotFoundError(
            'You want to use `torchvision` which is not installed yet, install it with `pip install torchvision`.'
        )

    normalize = transforms.Normalize(
        mean=[x / 255.0 for x in [129.3, 124.1, 112.4]],
        std=[x / 255.0 for x in [68.2, 65.4, 70.4]],
        # cifar10
        #mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
        #std=[x / 255.0 for x in [63.0, 62.1, 66.7]],
    )
    return normalize
class CIFAR100DataModule(VisionDataModule):
    """
    .. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/
        Plot-of-a-Subset-of-Images-from-the-CIFAR-10-Dataset.png
        :width: 400
        :alt: CIFAR-10
    Specs:
        - 10 classes (1 per class)
        - Each image is (3 x 32 x 32)
    Standard CIFAR10, train, val, test splits and transforms
    Transforms::
        mnist_transforms = transform_lib.Compose([
            transform_lib.ToTensor(),
            transforms.Normalize(
                mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
                std=[x / 255.0 for x in [63.0, 62.1, 66.7]]
            )
        ])
    Example::
        from pl_bolts.datamodules import CIFAR10DataModule
        dm = CIFAR10DataModule(PATH)
        model = LitModel()
        Trainer().fit(model, datamodule=dm)
    Or you can set your own transforms
    Example::
        dm.train_transforms = ...
        dm.test_transforms = ...
        dm.val_transforms  = ...
    """
    name = "cifar100"
    dataset_cls = CIFAR100
    dims = (3, 32, 32)

    def __init__(
        self,
        data_dir: Optional[str] = None,
        val_split: Union[int, float] = 0.2,
        num_workers: int = 16,
        normalize: bool = False,
        batch_size: int = 32,
        seed: int = 42,
        shuffle: bool = False,
        pin_memory: bool = False,
        drop_last: bool = False,
        *args: Any,
        **kwargs: Any,
    ) -> None:
        """
        Args:
            data_dir: Where to save/load the data
            val_split: Percent (float) or number (int) of samples to use for the validation split
            num_workers: How many workers to use for loading data
            normalize: If true applies image normalize
            batch_size: How many samples per batch to load
            seed: Random seed to be used for train/val/test splits
            shuffle: If true shuffles the train data every epoch
            pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before
                        returning them
            drop_last: If true drops the last incomplete batch
        """
        super().__init__(  # type: ignore[misc]
            data_dir=data_dir,
            val_split=val_split,
            num_workers=num_workers,
            normalize=normalize,
            batch_size=batch_size,
            seed=seed,
            shuffle=shuffle,
            pin_memory=pin_memory,
            drop_last=drop_last,
            *args,
            **kwargs,
        )

    @property
    def num_samples(self) -> int:
        train_len, _ = self._get_splits(len_dataset=50_000)
        return train_len

    @property
    def num_classes(self) -> int:
        """
        Return:
            10
        """
        return 100

    def default_transforms(self) -> Callable:
        if self.normalize:
            cf100_transforms = transforms.Compose([transform_lib.ToTensor(), cifar100_normalization()])
        else:
            cf100_transforms = transforms.Compose([transform_lib.ToTensor()])

        return cf100_transforms

 

モデル

import torch
import torch.nn as nn
import torch.nn.functional as F
class Block(nn.Module):
    '''Grouped convolution block.'''
    expansion = 2

    def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1):
        super(Block, self).__init__()
        group_width = cardinality * bottleneck_width
        self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(group_width)
        self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
        self.bn2 = nn.BatchNorm2d(group_width)
        self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*group_width)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*group_width:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*group_width)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class ResNeXt(nn.Module):
    def __init__(self, num_blocks, cardinality, bottleneck_width, num_classes=100):
        super(ResNeXt, self).__init__()
        self.cardinality = cardinality
        self.bottleneck_width = bottleneck_width
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(num_blocks[0], 1)
        self.layer2 = self._make_layer(num_blocks[1], 2)
        self.layer3 = self._make_layer(num_blocks[2], 2)
        # self.layer4 = self._make_layer(num_blocks[3], 2)
        self.linear = nn.Linear(cardinality*bottleneck_width*8, num_classes)

    def _make_layer(self, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(Block(self.in_planes, self.cardinality, self.bottleneck_width, stride))
            self.in_planes = Block.expansion * self.cardinality * self.bottleneck_width
        # Increase bottleneck_width by 2 after each stage.
        self.bottleneck_width *= 2
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        # out = self.layer4(out)
        out = F.avg_pool2d(out, 8)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


def ResNeXt29_2x64d():
    return ResNeXt(num_blocks=[3,3,3], cardinality=2, bottleneck_width=64)

def ResNeXt29_4x64d():
    return ResNeXt(num_blocks=[3,3,3], cardinality=4, bottleneck_width=64)

def ResNeXt29_8x64d():
    return ResNeXt(num_blocks=[3,3,3], cardinality=8, bottleneck_width=64)

def ResNeXt29_32x4d():
    return ResNeXt(num_blocks=[3,3,3], cardinality=32, bottleneck_width=4)
net = ResNeXt29_2x64d()
print(net)
y = net(torch.randn(1, 3, 32, 32))
print(y.size())
ResNeXt(
  (conv1): Conv2d(3, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer1): Sequential(
    (0): Block(
      (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Block(
      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): Block(
      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (layer2): Sequential(
    (0): Block(
      (conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Block(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): Block(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (layer3): Sequential(
    (0): Block(
      (conv1): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Block(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): Block(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (linear): Linear(in_features=1024, out_features=100, bias=True)
)
torch.Size([1, 100])
from torchsummary import summary
 
summary(ResNeXt29_2x64d().to('cuda'), (3, 32, 32))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 32, 32]             192
       BatchNorm2d-2           [-1, 64, 32, 32]             128
            Conv2d-3          [-1, 128, 32, 32]           8,192
       BatchNorm2d-4          [-1, 128, 32, 32]             256
            Conv2d-5          [-1, 128, 32, 32]          73,728
       BatchNorm2d-6          [-1, 128, 32, 32]             256
            Conv2d-7          [-1, 256, 32, 32]          32,768
       BatchNorm2d-8          [-1, 256, 32, 32]             512
            Conv2d-9          [-1, 256, 32, 32]          16,384
      BatchNorm2d-10          [-1, 256, 32, 32]             512
            Block-11          [-1, 256, 32, 32]               0
           Conv2d-12          [-1, 128, 32, 32]          32,768
      BatchNorm2d-13          [-1, 128, 32, 32]             256
           Conv2d-14          [-1, 128, 32, 32]          73,728
      BatchNorm2d-15          [-1, 128, 32, 32]             256
           Conv2d-16          [-1, 256, 32, 32]          32,768
      BatchNorm2d-17          [-1, 256, 32, 32]             512
            Block-18          [-1, 256, 32, 32]               0
           Conv2d-19          [-1, 128, 32, 32]          32,768
      BatchNorm2d-20          [-1, 128, 32, 32]             256
           Conv2d-21          [-1, 128, 32, 32]          73,728
      BatchNorm2d-22          [-1, 128, 32, 32]             256
           Conv2d-23          [-1, 256, 32, 32]          32,768
      BatchNorm2d-24          [-1, 256, 32, 32]             512
            Block-25          [-1, 256, 32, 32]               0
           Conv2d-26          [-1, 256, 32, 32]          65,536
      BatchNorm2d-27          [-1, 256, 32, 32]             512
           Conv2d-28          [-1, 256, 16, 16]         294,912
      BatchNorm2d-29          [-1, 256, 16, 16]             512
           Conv2d-30          [-1, 512, 16, 16]         131,072
      BatchNorm2d-31          [-1, 512, 16, 16]           1,024
           Conv2d-32          [-1, 512, 16, 16]         131,072
      BatchNorm2d-33          [-1, 512, 16, 16]           1,024
            Block-34          [-1, 512, 16, 16]               0
           Conv2d-35          [-1, 256, 16, 16]         131,072
      BatchNorm2d-36          [-1, 256, 16, 16]             512
           Conv2d-37          [-1, 256, 16, 16]         294,912
      BatchNorm2d-38          [-1, 256, 16, 16]             512
           Conv2d-39          [-1, 512, 16, 16]         131,072
      BatchNorm2d-40          [-1, 512, 16, 16]           1,024
            Block-41          [-1, 512, 16, 16]               0
           Conv2d-42          [-1, 256, 16, 16]         131,072
      BatchNorm2d-43          [-1, 256, 16, 16]             512
           Conv2d-44          [-1, 256, 16, 16]         294,912
      BatchNorm2d-45          [-1, 256, 16, 16]             512
           Conv2d-46          [-1, 512, 16, 16]         131,072
      BatchNorm2d-47          [-1, 512, 16, 16]           1,024
            Block-48          [-1, 512, 16, 16]               0
           Conv2d-49          [-1, 512, 16, 16]         262,144
      BatchNorm2d-50          [-1, 512, 16, 16]           1,024
           Conv2d-51            [-1, 512, 8, 8]       1,179,648
      BatchNorm2d-52            [-1, 512, 8, 8]           1,024
           Conv2d-53           [-1, 1024, 8, 8]         524,288
      BatchNorm2d-54           [-1, 1024, 8, 8]           2,048
           Conv2d-55           [-1, 1024, 8, 8]         524,288
      BatchNorm2d-56           [-1, 1024, 8, 8]           2,048
            Block-57           [-1, 1024, 8, 8]               0
           Conv2d-58            [-1, 512, 8, 8]         524,288
      BatchNorm2d-59            [-1, 512, 8, 8]           1,024
           Conv2d-60            [-1, 512, 8, 8]       1,179,648
      BatchNorm2d-61            [-1, 512, 8, 8]           1,024
           Conv2d-62           [-1, 1024, 8, 8]         524,288
      BatchNorm2d-63           [-1, 1024, 8, 8]           2,048
            Block-64           [-1, 1024, 8, 8]               0
           Conv2d-65            [-1, 512, 8, 8]         524,288
      BatchNorm2d-66            [-1, 512, 8, 8]           1,024
           Conv2d-67            [-1, 512, 8, 8]       1,179,648
      BatchNorm2d-68            [-1, 512, 8, 8]           1,024
           Conv2d-69           [-1, 1024, 8, 8]         524,288
      BatchNorm2d-70           [-1, 1024, 8, 8]           2,048
            Block-71           [-1, 1024, 8, 8]               0
           Linear-72                  [-1, 100]         102,500
================================================================
Total params: 9,221,028
Trainable params: 9,221,028
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 65.00
Params size (MB): 35.18
Estimated Total Size (MB): 100.19
----------------------------------------------------------------

 

Lightning モジュール

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau
from torch.optim.swa_utils import AveragedModel, update_bn
import torchvision
 
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping
from pytorch_lightning.metrics.functional import accuracy
#from pl_bolts.datamodules import CIFAR10DataModule
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
batch_size = 50
 
train_transforms = torchvision.transforms.Compose([
    torchvision.transforms.RandomCrop(32, padding=4),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    cifar100_normalization(),
])
 
test_transforms = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    cifar100_normalization(),
])
 
cifar100_dm = CIFAR100DataModule(
    batch_size=batch_size,
    num_workers=8,
    train_transforms=train_transforms,
    test_transforms=test_transforms,
    val_transforms=test_transforms,
)
class LitCifar100(pl.LightningModule):
    def __init__(self, lr=0.05, factor=0.8):
        super().__init__()
  
        self.save_hyperparameters()
        self.model = ResNeXt29_2x64d()
 
    def forward(self, x):
        out = self.model(x)
        return F.log_softmax(out, dim=1)
  
    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = F.log_softmax(self.model(x), dim=1)
        loss = F.nll_loss(logits, y)
        self.log('train_loss', loss)
        return loss
  
    def evaluate(self, batch, stage=None):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y)
  
        if stage:
            self.log(f'{stage}_loss', loss, prog_bar=True)
            self.log(f'{stage}_acc', acc, prog_bar=True)
  
    def validation_step(self, batch, batch_idx):
        self.evaluate(batch, 'val')
  
    def test_step(self, batch, batch_idx):
        self.evaluate(batch, 'test')
  
    def configure_optimizers(self):
        optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
 
        return {
          'optimizer': optimizer,
          'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=5, factor=self.hparams.factor, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5),
          'monitor': 'val_acc'
        }

 

訓練 / 評価

%%time
 
model = LitCifar100(lr=0.05, factor=0.5)
model.datamodule = cifar100_dm
  
trainer = pl.Trainer(
    gpus=1,
    max_epochs=100,
    progress_bar_refresh_rate=100,
    logger=pl.loggers.TensorBoardLogger('tblogs/', name='resnext29_2x64d'),
    callbacks=[LearningRateMonitor(logging_interval='step')],
)
  
trainer.fit(model, cifar100_dm)
trainer.test(model, datamodule=cifar100_dm);
  | Name  | Type    | Params
----------------------------------
0 | model | ResNeXt | 9.2 M 
----------------------------------
9.2 M     Trainable params
0         Non-trainable params
9.2 M     Total params
36.884    Total estimated model params size (MB)
(...)
Epoch    34: reducing learning rate of group 0 to 2.5000e-02.
Epoch    41: reducing learning rate of group 0 to 1.2500e-02.
Epoch    49: reducing learning rate of group 0 to 6.2500e-03.
Epoch    63: reducing learning rate of group 0 to 3.1250e-03.
Epoch    77: reducing learning rate of group 0 to 1.5625e-03.
Epoch    84: reducing learning rate of group 0 to 7.8125e-04.
Epoch    91: reducing learning rate of group 0 to 3.9063e-04.
Epoch    98: reducing learning rate of group 0 to 1.9531e-04.
(...)
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.7299000024795532, 'test_loss': 1.0691789388656616}
--------------------------------------------------------------------------------
CPU times: user 2h 18min 57s, sys: 1h 29min 52s, total: 3h 48min 50s
Wall time: 3h 51min 18s
 

以上