HuggingFace Diffusers 0.12 : ノートブック : CLIP 誘導 Stable Diffusion (翻訳/解説)
翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 03/05/2023 (v0.13.1)
* 本ページは、HuggingFace Diffusers の以下のドキュメントを翻訳した上で適宜、補足説明したものです:
* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
クラスキャット 人工知能 研究開発支援サービス
◆ クラスキャット は人工知能・テレワークに関する各種サービスを提供しています。お気軽にご相談ください :
- 人工知能研究開発支援
- 人工知能研修サービス(経営者層向けオンサイト研修)
- テクニカルコンサルティングサービス
- 実証実験(プロトタイプ構築)
- アプリケーションへの実装
- 人工知能研修サービス
- PoC(概念実証)を失敗させないための支援
◆ 人工知能とビジネスをテーマに WEB セミナーを定期的に開催しています。スケジュール。
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
- 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
- sales-info@classcat.com ; Web: www.classcat.com ; ClassCatJP
HuggingFace Diffusers 0.12 : ノートブック : CLIP 誘導 Stable Diffusion
このノートブックは diffusers を使用して Stable diffusion による CLIP 誘導を行う方法を示します。これは LAION AI により新たに公開された CLIP モデル を利用することを可能にします。
This notebook is based on the following amazing repos, all credits to the original authors!
初期セットアップ
依存関係のインストール
#@title Instal dependancies
!pip install -qqq diffusers==0.11.1 transformers ftfy gradio accelerate
Hugging Face で認証
🤗 Hugging Face ハブでプライベート & gated モデルを使用するには、ログインが必要です。(このノートブックの CompVis/stable-diffusion-v1-4 のように) 公開チェック・ポイントだけを使用している場合には、このステップはスキップできます。
ログイン
#@title Login
from huggingface_hub import notebook_login
notebook_login()
CLIP 誘導 Stable Diffusion
パイプラインのロード
#@title Load the pipeline
import torch
from PIL import Image
from diffusers import LMSDiscreteScheduler, DiffusionPipeline, PNDMScheduler
from transformers import CLIPFeatureExtractor, CLIPModel
model_id = "CompVis/stable-diffusion-v1-4" #@param {type: "string"}
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K" #@param ["laion/CLIP-ViT-B-32-laion2B-s34B-b79K", "laion/CLIP-ViT-L-14-laion2B-s32B-b82K", "laion/CLIP-ViT-H-14-laion2B-s32B-b79K", "laion/CLIP-ViT-g-14-laion2B-s12B-b42K", "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch16", "openai/clip-vit-large-patch14"] {allow-input: true}
scheduler = "plms" #@param ['plms', 'lms']
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
if scheduler == "lms":
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
else:
scheduler = PNDMScheduler.from_config(model_id, subfolder="scheduler")
feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
guided_pipeline = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline="clip_guided_stable_diffusion",
custom_revision="main", # TODO: remove if diffusers>=0.12.0
clip_model=clip_model,
feature_extractor=feature_extractor,
scheduler=scheduler,
torch_dtype=torch.float16,
)
guided_pipeline = guided_pipeline.to("cuda")
Gradio デモで生成
#@title Generate with Gradio Demo
import gradio as gr
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
from PIL import Image
last_model = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
def infer(prompt, clip_prompt, samples, steps, clip_scale, scale, seed, clip_model, use_cutouts, num_cutouts):
global last_model
print(last_model)
if(last_model == clip_model):
guided_pipeline = create_clip_guided_pipeline(model_id, clip_model_id)
guided_pipeline = guided_pipeline.to("cuda")
last_model = clip_model
prompt = prompt
clip_prompt = clip_prompt
num_samples = samples
num_inference_steps = steps
guidance_scale = scale
clip_guidance_scale = clip_scale
if(use_cutouts):
use_cutouts = "True"
else:
use_cutouts = "False"
unfreeze_unet = "True"
unfreeze_vae = "True"
seed = seed
if unfreeze_unet == "True":
guided_pipeline.unfreeze_unet()
else:
guided_pipeline.freeze_unet()
if unfreeze_vae == "True":
guided_pipeline.unfreeze_vae()
else:
guided_pipeline.freeze_vae()
generator = torch.Generator(device="cuda").manual_seed(seed)
images = []
for i in range(num_samples):
image = guided_pipeline(
prompt,
clip_prompt=clip_prompt if clip_prompt.strip() != "" else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
clip_guidance_scale=clip_guidance_scale,
num_cutouts=num_cutouts,
use_cutouts=use_cutouts == "True",
generator=generator,
).images[0]
images.append(image)
#image_grid(images, 1, num_samples)
return images
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
"""
block = gr.Blocks(css=css)
examples = [
[
'A high tech solarpunk utopia in the Amazon rainforest',
2,
45,
7.5,
1024,
],
[
'A pikachu fine dining with a view to the Eiffel Tower',
2,
45,
7,
1024,
],
[
'A mecha robot in a favela in expressionist style',
2,
45,
7,
1024,
],
[
'an insect robot preparing a delicious meal',
2,
45,
7,
1024,
],
[
"A small cabin on top of a snowy mountain in the style of Disney, artstation",
2,
45,
7,
1024,
],
]
with block:
gr.HTML(
"""
CLIP Guided Stable Diffusion Demo
Demo allows you to use newly released CLIP models by LAION AI with Stable Diffusion
"""
)
with gr.Group():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Generate image").style(
margin=False,
rounded=(False, True, True, False),
)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
with gr.Row(elem_id="advanced-options"):
with gr.Column():
clip_prompt = gr.Textbox(
label="Enter a CLIP prompt if you want it to differ",
show_label=False,
max_lines=1,
placeholder="Enter a CLIP prompt if you want it to differ",
)
with gr.Row():
samples = gr.Slider(label="Images", minimum=1, maximum=2, value=1, step=1)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
with gr.Row():
use_cutouts = gr.Checkbox(label="Use cutouts?")
num_cutouts = gr.Slider(label="Cutouts", minimum=1, maximum=16, value=4, step=1)
with gr.Row():
with gr.Column():
clip_model = gr.Dropdown(["laion/CLIP-ViT-B-32-laion2B-s34B-b79K", "laion/CLIP-ViT-L-14-laion2B-s32B-b82K", "laion/CLIP-ViT-H-14-laion2B-s32B-b79K", "laion/CLIP-ViT-g-14-laion2B-s12B-b42K", "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch16", "openai/clip-vit-large-patch14"], value="laion/CLIP-ViT-B-32-laion2B-s34B-b79K", show_label=False)
with gr.Row():
scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
clip_scale = gr.Slider(
label="CLIP Guidance Scale", minimum=0, maximum=5000, value=100, step=1
)
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, clip_scale, seed], outputs=gallery, cache_examples=False)
ex.dataset.headers = [""]
text.submit(infer, inputs=[text, clip_prompt, samples, steps, scale, clip_scale, seed, clip_model, use_cutouts, num_cutouts], outputs=gallery)
btn.click(infer, inputs=[text, clip_prompt, samples, steps, scale, clip_scale, seed, clip_model, use_cutouts, num_cutouts], outputs=gallery)
advanced_button.click(
None,
[],
text,
_js="""
() => {
const options = document.querySelector("body > gradio-app").querySelector("#advanced-options");
options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
}""",
)
gr.HTML(
"""
Model by CompVis and Stability AI - Gradio Demo by 🤗 Hugging Face
LICENSE
The model is licensed with a CreativeML Open RAIL-M license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please read the license
Biases and content acknowledgment
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the LAION-5B dataset, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the model card
"""
)
block.launch(debug=True)
Colab 上で生成
#@title Generate on Colab
prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece" #@param {type: "string"}
#@markdown `clip_prompt` is optional, if you leave it blank the same prompt is sent to Stable Diffusion and CLIP
clip_prompt = "" #@param {type: "string"}
num_samples = 1 #@param {type: "number"}
num_inference_steps = 50 #@param {type: "number"}
guidance_scale = 7.5 #@param {type: "number"}
clip_guidance_scale = 100 #@param {type: "number"}
num_cutouts = 4 #@param {type: "number"}
use_cutouts = "False" #@param ["False", "True"]
unfreeze_unet = "True" #@param ["False", "True"]
unfreeze_vae = "True" #@param ["False", "True"]
seed = 3788086447 #@param {type: "number"}
if unfreeze_unet == "True":
guided_pipeline.unfreeze_unet()
else:
guided_pipeline.freeze_unet()
if unfreeze_vae == "True":
guided_pipeline.unfreeze_vae()
else:
guided_pipeline.freeze_vae()
generator = torch.Generator(device="cuda").manual_seed(seed)
images = []
for i in range(num_samples):
image = guided_pipeline(
prompt,
clip_prompt=clip_prompt if clip_prompt.strip() != "" else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
clip_guidance_scale=clip_guidance_scale,
num_cutouts=num_cutouts,
use_cutouts=use_cutouts == "True",
generator=generator,
).images[0]
images.append(image)
image_grid(images, 1, num_samples)
以上