HuggingFace Transformers 4.6 : 概要 (翻訳/解説)
翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 05/15/2021 (4.6.0)
* 本ページは、HuggingFace Transformers の以下のドキュメントを翻訳した上で適宜、補足説明したものです:
* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
スケジュールは弊社 公式 Web サイト でご確認頂けます。
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
- ウェビナー運用には弊社製品「ClassCat® Webinar」を利用しています。
人工知能研究開発支援 | 人工知能研修サービス | テレワーク & オンライン授業を支援 |
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。) |
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション |
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/ ; Facebook |
HuggingFace Transformers : 概要
PyTorch と TensorFlow 2.0 のための最先端の自然言語処理
- Transformers は 100+ 言語の分類、情報抽出、質問応答、要約、翻訳、テキスト生成等のテキスト上のタスクを遂行するために数千の事前訓練モデルを提供します。その目的は最先端の NLP を誰でも容易に利用できるようにすることです。
- Transformers はそれらの事前訓練モデルを素早くダウンロードして与えられたテキスト上で利用し、それらを貴方自身のデータセット上で再調整し、それからそれらを私達の モデル・ハブ 上でコミュニティと共有するための API を提供します。同時に、アーキテクチャを定義する各 python モジュールは素早い研究実験を可能にするためスタンドアロンとして利用できて変更できます。
- Transformers は 2 つの最もポピュラーな深層学習ライブラリ PyTorch と TensorFlow により、それらの間のシームレスな統合によって支援され、その一つでモデルを訓練してから推論のために他方でそれをロードすることを可能にします。
オンライン・デモ
私達のモデルの殆どを モデルハブ のそれらのページから直接テストすることができます。それらのモデルを利用するための プライベートモデル・ホスティング、バージョニング & 推論 API もまた供給します。
ここに幾つかサンプルがあります :
- BERT による Masked 単語補完
- Electra による固有表現認識
- GPT-2 によるテキスト生成
- RoBERTa による自然言語推論
- BART による要約
- DistilBERT による質問応答
- T5 による翻訳
Hugging Face チームにより構築された Write With Transformer はこのレポジトリのテキスト生成機能の公式デモです。
クイック・ツアー
与えられたテキスト上でモデルを直ちに利用するため、パイプライン API を提供します。パイプラインは事前訓練されたモデルをそのモデル訓練の間に使用された前処理と一緒にグループ化します。ここにポジティブ vs ネガティブ・テキストを分類するためのパイプラインをどのように素早く利用するかがあります :
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
コードの 2 番目の行はパイプラインで使用された事前訓練モデルをダウンロードしてキャッシュします、一方で 3 番目の行はそれを与えられたテキスト上で評価します。ここでは答えは 99.97% の信頼度で「ポジティブ」です。
多くの NLP タスクは事前訓練されたパイプラインを持ちます。例えば、コンテキストが与えられたとき質問への回答を容易に抽出できます :
>>> from transformers import pipeline
# Allocate a pipeline for question-answering
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'
答えに加えて、ここで使用される事前訓練モデルは (トークン化されたセンテンスの開始位置と終了位置とともに) その信頼度スコアを返しました。このチュートリアル でパイプライン API によりサポートされるタスクについて更に学習できます。
与えられたタスク上で任意の事前訓練されたモデルをダウンロードして利用するには、3 行のコードを必要とするだけです。ここに PyToch バージョンがあります :
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
そしてここに TensorFlow のための同値なコードがあります :
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
tokenizer は事前訓練されたモデルが想定する前処理の総ての責任を負い、そして (上のサンプルでのように) 単一の文字列かリスト上で直接呼び出せます。それは辞書を出力します、これは下流コードで利用するか、あるいは ** 引数 unpacking 演算子を使用して単純にモデルに渡すことができます。
モデル自身は通常の Pytorch nn.Module や TensorFlow tf.keras.Model で (貴方のバックエンドに依存します)、これらは普通に利用できます。このチュートリアル は古典的な PyTorch or TensorFlow 訓練ループでそのようなモデルをどのように統合するか、あるいは新しいデータセット上で素早く再調整するために Trainer API をどのように利用するかを説明しています。
何故私は transformers を使用するべきでしょう?
- 使いやすい最先端のモデル :
- NLU と NLG タスク上の高パフォーマンス。
- 教育者と実践者のための入門への低い障壁。
- 学習すべき 3 つのクラスだけを持つ、ユーザが直面する少ない抽象。
- 事前訓練されたモデルの総てを使用するための統一 API。
- より低い計算コスト、より小さいカーボンフットプリント (二酸化炭素排出量) :
- 研究者は常に再訓練する代わりに訓練モデルを共有できます。
- 実践者は計算時間とプロダクション・コストを減じることができます。
- 幾つかは100 言語以上の、2,000 超の事前訓練モデルを持つ数十のアーキテクチャ。
- モデルのライフタイムの総てのパートのために適切なフレームワークを選択する :
- 3 行のコードで最先端のモデルを訓練します。
- TF2.0/PyTorch フレームワーク間で単一モデルを自在に移動する。
- 訓練、評価、プロダクションのための適切なフレームワークをシームレスに選択する。
- 貴方のニーズにモデルやサンプルを容易にカスタマイズする :
- 言及されるアーキテクチャの公式著者による結果を再生成するための各アーキテクチャのためのサンプル。
- できる限り一貫してモデル内部を公開する。
- モデルファイルは素早い実験のためにライブラリから独立的に利用できる。
何故 transformers を利用するべきではないのでしょう?
- このライブラリはニューラルネットのためのビルディングブロックのモジュール・ツールボックスではありません。研究者が追加の抽象/ファイルに深入りすることなくモデルの各々の上で素早く iterate できるようにように、モデルファイルのコードは意図的な追加の抽象によりリファクタリングされません。
- 訓練 API は任意のモデル上で動作することを意図されていませんがライブラリにより提供されるモデルで動作するように最適化されています。一般的な機械学習ループのためには、他のライブラリを利用するべきです。
- 私達は可能な限り多くのユースケースを提示する努力をする一方で、examples フォルダ のスクリプトは単なるサンプルです。それらは貴方の特定の問題上でそのままでは動作しないでしょうし、それらを貴方のニーズに適応させるためにコードの数行を変更する必要があることが想定されます。
モデル・アーキテクチャ
Transformers により提供される 総てのモデルチェックポイント は huggingface.co モデルハブ からシームレスに統合されていて、そこではそれらは ユーザ と 組織 により直接アップロードされています。
チェックポイントの現在の数 : モデル 11,588 (as of 5/15/2021)
Transformers は現在以下のアーキテクチャを提供しています (それらの各々の高位な要約については ここ を参照) :
- ALBERT (from Google Research and the Toyota Technological Institute at Chicago) released with the paper ALBERT: A Lite BERT for Self-supervised Learning of Language Representations, by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
- BART (from Facebook) released with the paper BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
- BARThez (from École polytechnique) released with the paper BARThez: a Skilled Pretrained French Sequence-to-Sequence Model by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
- BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
- BERT For Sequence Generation (from Google) released with the paper Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
- BigBird-RoBERTa (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
- New ! BigBird-Pegasus (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
- Blenderbot (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
- BlenderbotSmall (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
- BORT (from Alexa) released with the paper Optimal Subarchitecture Extraction For BERT by Adrian de Wynter and Daniel J. Perry.
- CamemBERT (from Inria/Facebook/Sorbonne) released with the paper CamemBERT: a Tasty French Language Model by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
- New ! CLIP from (OpenAI) released with the paper Learning Transferable Visual Models From Natural Language Supervision by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
- ConvBERT (from YituTech) released with the paper ConvBERT: Improving BERT with Span-based Dynamic Convolution by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
- CPM (from Tsinghua University) released with the paper CPM: A Large-scale Generative Chinese Pre-trained Language Model by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
- CTRL (from Salesforce) released with the paper CTRL: A Conditional Transformer Language Model for Controllable Generation by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
- DeBERTa (from Microsoft Research) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
- DeBERTa-v2 (from Microsoft) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
- DeiT (from Facebook) released with the paper Training data-efficient image transformers & distillation through attention by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
- DialoGPT (from Microsoft Research) released with the paper DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
- DistilBERT (from HuggingFace), released together with the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into DistilGPT2, RoBERTa into DistilRoBERTa, Multilingual BERT into DistilmBERT and a German version of DistilBERT.
- DPR (from Facebook) released with the paper Dense Passage Retrieval for Open-Domain Question Answering by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
- ELECTRA (from Google Research/Stanford University) released with the paper ELECTRA: Pre-training text encoders as discriminators rather than generators by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
- FlauBERT (from CNRS) released with the paper FlauBERT: Unsupervised Language Model Pre-training for French by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
- Funnel Transformer (from CMU/Google Brain) released with the paper Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
- GPT (from OpenAI) released with the paper Improving Language Understanding by Generative Pre-Training by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
- GPT-2 (from OpenAI) released with the paper Language Models are Unsupervised Multitask Learners by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
- GPT Neo (from EleutherAI) released in the repository EleutherAI/gpt-neo by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
- I-BERT (from Berkeley) released with the paper I-BERT: Integer-only BERT Quantization by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer
- LayoutLM (from Microsoft Research Asia) released with the paper LayoutLM: Pre-training of Text and Layout for Document Image Understanding by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
- LED (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
- Longformer (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
- New ! LUKE (from Studio Ousia) released with the paper LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
- LXMERT (from UNC Chapel Hill) released with the paper LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering by Hao Tan and Mohit Bansal.
- M2M100 (from Facebook) released with the paper Beyond English-Centric Multilingual Machine Translation by by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
- MarianMT Machine translation models trained using OPUS data by Jörg Tiedemann. The Marian Framework is being developed by the Microsoft Translator Team.
- MBart (from Facebook) released with the paper Multilingual Denoising Pre-training for Neural Machine Translation by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
- MBart-50 (from Facebook) released with the paper Multilingual Translation with Extensible Multilingual Pretraining and Finetuning by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
- Megatron-BERT (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
- Megatron-GPT2 (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
- MPNet (from Microsoft Research) released with the paper MPNet: Masked and Permuted Pre-training for Language Understanding by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
- MT5 (from Google AI) released with the paper mT5: A massively multilingual pre-trained text-to-text transformer by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
- Pegasus (from Google) released with the paper PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
- ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
- Reformer (from Google Research) released with the paper Reformer: The Efficient Transformer by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
- RoBERTa (from Facebook), released together with the paper a Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. ultilingual BERT into DistilmBERT and a German version of DistilBERT.
- SpeechToTextTransformer (from Facebook), released together with the paper fairseq S2T: Fast Speech-to-Text Modeling with fairseq by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
- SqueezeBert released with the paper SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
- T5 (from Google AI) released with the paper Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
- TAPAS (from Google AI) released with the paper TAPAS: Weakly Supervised Table Parsing via Pre-training by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
- Transformer-XL (from Google/CMU) released with the paper Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
- Vision Transformer (ViT) (from Google AI) released with the paper An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
- Wav2Vec2 (from Facebook AI) released with the paper wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
- XLM (from Facebook) released together with the paper Cross-lingual Language Model Pretraining by Guillaume Lample and Alexis Conneau.
- XLM-ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
- XLM-RoBERTa (from Facebook AI), released together with the paper Unsupervised Cross-lingual Representation Learning at Scale by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
- XLNet (from Google/CMU) released with the paper XLNet: Generalized Autoregressive Pretraining for Language Understanding by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
- XLSR-Wav2Vec2 (from Facebook AI) released with the paper Unsupervised Cross-Lingual Representation Learning For Speech Recognition by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
- 新しいモデルを寄贈することを望みますか?新しいモデルを追加するプロセスに導く詳細なガイドとテンプレートを追加しました。レポジトリの templates フォルダでそれらを見つけることができます。貴方の PR を始める前にフィードバックを集めるために contributing ガイドライン を確認してそしてメンテナーにコンタクトするか issue をオープンすることを確実にしてください。
各モデルが PyTorch/TensorFlow/Flax の実装を持つか、あるいは Tokenizer により支援された関連する tokenizer を持つかを確認するためには、このテーブル を参照してください。
これらの実装は幾つかのデータセット上でテストされ (examples スクリプト参照) そして元の実装のパフォーマンスに一致するはずです。ドキュメントの Examples セクションでパフォーマンス上の更なる詳細を見つけられます。
更に学習する
セクション | 説明 |
ドキュメント | Full API ドキュメントとチュートリアル |
タスク要約 | Transformers によりサポートされるタスク |
前処理チュートリアル | モデルのためにデータを準備するための Tokenizer クラスを使用する |
訓練と再調整 | PyTorch/TensorFlow 訓練ループと Trainer API で Transformers により提供されるモデルを使用する |
クイックツアー: 再調整/使用方法スクリプト | 広範囲なタスク上でモデルを再調整するためのサンプル・スクリプト |
モデル共有とアップロード | 貴方の再調整モデルをアップロードしてコミュニティで共有する |
マイグレーション | pytorch-transformers or pytorch-pretrained-bert から Transformers にマイグレートする |
Citation
(訳注: 原文 を参照してください。)
以上