PyTorch Lightning 1.1: research : CIFAR100 (VGG)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/24/2021 (1.1.x)
* 本ページは以下の CIFAR10 用リソースを参考に CIFAR100 で遂行した実験結果のレポートです:
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
★ 無料セミナー実施中 ★ クラスキャット主催 人工知能 & ビジネス Web セミナー
人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
- Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :
人工知能研究開発支援 | 人工知能研修サービス | テレワーク & オンライン授業を支援 |
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。) |
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション |
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/ |
Facebook: https://www.facebook.com/ClassCatJP/ |
research: CIFAR100 (VGG)
VGG11
仕様
- VGG11
- Total params: 9,277,284 (9.3 M)
- Trainable params: 9,277,284
- Non-trainable params: 0
結果
- VGG11
- {‘test_acc’: 0.670199990272522, ‘test_loss’: 1.3739653825759888}
- 100 エポック ; Wall time: 45min 10s
- ReduceLROnPlateau
VGG13
仕様
- VGG13
- Total params: 9,462,180 (9.5 M)
- Trainable params: 9,462,180
- Non-trainable params: 0
結果
- VGG13
- {‘test_acc’: 0.7024999856948853, ‘test_loss’: 1.2473818063735962}
- 100 エポック ; Wall time: 56min 51s
- ReduceLROnPlateau
VGG16
仕様
- VGG16
- Total params: 14,774,436 (14.8 M)
- Trainable params: 14,774,436
- Non-trainable params: 0
結果
- VGG16
- {‘test_acc’: 0.6888999938964844, ‘test_loss’: 1.7077816724777222}
- 100 エポック ; Wall time: 1h 8min 2s
- ReduceLROnPlateau
CIFAR 100 DM
from typing import Any, Callable, Optional, Sequence, Union from pl_bolts.datamodules.vision_datamodule import VisionDataModule #from pl_bolts.datasets import TrialCIFAR10 #from pl_bolts.transforms.dataset_normalizations import cifar10_normalization from pl_bolts.utils import _TORCHVISION_AVAILABLE from pl_bolts.utils.warnings import warn_missing_pkg if _TORCHVISION_AVAILABLE: from torchvision import transforms #from torchvision import transforms as transform_lib from torchvision.datasets import CIFAR100 else: # pragma: no cover warn_missing_pkg('torchvision') CIFAR100 = None
def cifar100_normalization(): if not _TORCHVISION_AVAILABLE: # pragma: no cover raise ModuleNotFoundError( 'You want to use `torchvision` which is not installed yet, install it with `pip install torchvision`.' ) normalize = transforms.Normalize( mean=[x / 255.0 for x in [129.3, 124.1, 112.4]], std=[x / 255.0 for x in [68.2, 65.4, 70.4]], # cifar10 #mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], #std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ) return normalize
class CIFAR100DataModule(VisionDataModule): """ .. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/ Plot-of-a-Subset-of-Images-from-the-CIFAR-10-Dataset.png :width: 400 :alt: CIFAR-10 Specs: - 10 classes (1 per class) - Each image is (3 x 32 x 32) Standard CIFAR10, train, val, test splits and transforms Transforms:: mnist_transforms = transform_lib.Compose([ transform_lib.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]] ) ]) Example:: from pl_bolts.datamodules import CIFAR10DataModule dm = CIFAR10DataModule(PATH) model = LitModel() Trainer().fit(model, datamodule=dm) Or you can set your own transforms Example:: dm.train_transforms = ... dm.test_transforms = ... dm.val_transforms = ... """ name = "cifar100" dataset_cls = CIFAR100 dims = (3, 32, 32) def __init__( self, data_dir: Optional[str] = None, val_split: Union[int, float] = 0.2, num_workers: int = 16, normalize: bool = False, batch_size: int = 32, seed: int = 42, shuffle: bool = False, pin_memory: bool = False, drop_last: bool = False, *args: Any, **kwargs: Any, ) -> None: """ Args: data_dir: Where to save/load the data val_split: Percent (float) or number (int) of samples to use for the validation split num_workers: How many workers to use for loading data normalize: If true applies image normalize batch_size: How many samples per batch to load seed: Random seed to be used for train/val/test splits shuffle: If true shuffles the train data every epoch pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before returning them drop_last: If true drops the last incomplete batch """ super().__init__( # type: ignore[misc] data_dir=data_dir, val_split=val_split, num_workers=num_workers, normalize=normalize, batch_size=batch_size, seed=seed, shuffle=shuffle, pin_memory=pin_memory, drop_last=drop_last, *args, **kwargs, ) @property def num_samples(self) -> int: train_len, _ = self._get_splits(len_dataset=50_000) return train_len @property def num_classes(self) -> int: """ Return: 10 """ return 100 def default_transforms(self) -> Callable: if self.normalize: cf100_transforms = transforms.Compose([transform_lib.ToTensor(), cifar100_normalization()]) else: cf100_transforms = transforms.Compose([transform_lib.ToTensor()]) return cf100_transforms
モデル
import torch import torch.nn as nn
cfg = { 'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], }
class VGG(nn.Module): def __init__(self, vgg_name): super(VGG, self).__init__() self.features = self._make_layers(cfg[vgg_name]) self.classifier = nn.Linear(512, 100) #self.classifier = nn.Linear(512, 10) def forward(self, x): out = self.features(x) out = out.view(out.size(0), -1) out = self.classifier(out) return out def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers)
net = VGG('VGG11') print(net) x = torch.randn(2,3,32,32) y = net(x) print(y.size())
VGG( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (4): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (5): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (8): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (9): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (10): ReLU(inplace=True) (11): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (13): ReLU(inplace=True) (14): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (15): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (16): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (17): ReLU(inplace=True) (18): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (19): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (20): ReLU(inplace=True) (21): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (22): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (23): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (24): ReLU(inplace=True) (25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (26): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (27): ReLU(inplace=True) (28): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (29): AvgPool2d(kernel_size=1, stride=1, padding=0) ) (classifier): Linear(in_features=512, out_features=100, bias=True) ) torch.Size([2, 100])
from torchsummary import summary summary(VGG('VGG11').to('cuda'), (3, 32, 32))
---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 64, 32, 32] 1,792 BatchNorm2d-2 [-1, 64, 32, 32] 128 ReLU-3 [-1, 64, 32, 32] 0 MaxPool2d-4 [-1, 64, 16, 16] 0 Conv2d-5 [-1, 128, 16, 16] 73,856 BatchNorm2d-6 [-1, 128, 16, 16] 256 ReLU-7 [-1, 128, 16, 16] 0 MaxPool2d-8 [-1, 128, 8, 8] 0 Conv2d-9 [-1, 256, 8, 8] 295,168 BatchNorm2d-10 [-1, 256, 8, 8] 512 ReLU-11 [-1, 256, 8, 8] 0 Conv2d-12 [-1, 256, 8, 8] 590,080 BatchNorm2d-13 [-1, 256, 8, 8] 512 ReLU-14 [-1, 256, 8, 8] 0 MaxPool2d-15 [-1, 256, 4, 4] 0 Conv2d-16 [-1, 512, 4, 4] 1,180,160 BatchNorm2d-17 [-1, 512, 4, 4] 1,024 ReLU-18 [-1, 512, 4, 4] 0 Conv2d-19 [-1, 512, 4, 4] 2,359,808 BatchNorm2d-20 [-1, 512, 4, 4] 1,024 ReLU-21 [-1, 512, 4, 4] 0 MaxPool2d-22 [-1, 512, 2, 2] 0 Conv2d-23 [-1, 512, 2, 2] 2,359,808 BatchNorm2d-24 [-1, 512, 2, 2] 1,024 ReLU-25 [-1, 512, 2, 2] 0 Conv2d-26 [-1, 512, 2, 2] 2,359,808 BatchNorm2d-27 [-1, 512, 2, 2] 1,024 ReLU-28 [-1, 512, 2, 2] 0 MaxPool2d-29 [-1, 512, 1, 1] 0 AvgPool2d-30 [-1, 512, 1, 1] 0 Linear-31 [-1, 100] 51,300 ================================================================ Total params: 9,277,284 Trainable params: 9,277,284 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.01 Forward/backward pass size (MB): 3.71 Params size (MB): 35.39 Estimated Total Size (MB): 39.11 ----------------------------------------------------------------
Lightning モジュール
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau from torch.optim.swa_utils import AveragedModel, update_bn import torchvision import pytorch_lightning as pl from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping from pytorch_lightning.metrics.functional import accuracy #from pl_bolts.datamodules import CIFAR10DataModule #from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
batch_size = 100 train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomCrop(32, padding=4), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), cifar100_normalization(), ]) test_transforms = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), cifar100_normalization(), ]) cifar100_dm = CIFAR100DataModule( batch_size=batch_size, num_workers=8, train_transforms=train_transforms, test_transforms=test_transforms, val_transforms=test_transforms, )
class LitCifar100(pl.LightningModule): def __init__(self, model_name='VGG11', lr=0.05, factor=0.8): super().__init__() self.save_hyperparameters() self.model = VGG(model_name) def forward(self, x): out = self.model(x) return F.log_softmax(out, dim=1) def training_step(self, batch, batch_idx): x, y = batch logits = F.log_softmax(self.model(x), dim=1) loss = F.nll_loss(logits, y) self.log('train_loss', loss) return loss def evaluate(self, batch, stage=None): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) if stage: self.log(f'{stage}_loss', loss, prog_bar=True) self.log(f'{stage}_acc', acc, prog_bar=True) def validation_step(self, batch, batch_idx): self.evaluate(batch, 'val') def test_step(self, batch, batch_idx): self.evaluate(batch, 'test') def configure_optimizers(self): optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4) return { 'optimizer': optimizer, 'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=5, factor=self.hparams.factor, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5), 'monitor': 'val_acc' }
訓練 / 評価
%%time model = LitCifar100('VGG11', lr=0.05, factor=0.5) model.datamodule = cifar100_dm trainer = pl.Trainer( gpus=2, accelerator='dp', max_epochs=100, progress_bar_refresh_rate=100, logger=pl.loggers.TensorBoardLogger('tblogs/', name='vgg11'), callbacks=[LearningRateMonitor(logging_interval='step')], ) trainer.fit(model, cifar100_dm) trainer.test(model, datamodule=cifar100_dm);
GPU available: True, used: True TPU available: None, using: 0 TPU cores (...) | Name | Type | Params ------------------------------- 0 | model | VGG | 9.3 M ------------------------------- 9.3 M Trainable params 0 Non-trainable params 9.3 M Total params 37.109 Total estimated model params size (MB) (...) (...) -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.670199990272522, 'test_loss': 1.3739653825759888} -------------------------------------------------------------------------------- CPU times: user 27min 27s, sys: 7min 27s, total: 34min 55s Wall time: 45min 10s
以上