HuggingFace Transformers 4.6 : 上級ガイド : Examples (翻訳/解説)
翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 05/15/2021 (4.6.0)
* 本ページは、HuggingFace Transformers の以下のドキュメントを翻訳した上で適宜、補足説明したものです:
- Advanced Guides : Examples
* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
スケジュールは弊社 公式 Web サイト でご確認頂けます。
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
- ウェビナー運用には弊社製品「ClassCat® Webinar」を利用しています。
人工知能研究開発支援 | 人工知能研修サービス | テレワーク & オンライン授業を支援 |
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。) |
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション |
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/ ; Facebook |
HuggingFace Transformers : 上級ガイド : Examples
このフォルダは NLP タスクに沿って体系化された Transformers の使用方法のアクティブにメンテナンスされたサンプルを含みます。このフォルダーにかつてあったサンプルを探している場合には、対応するフレームワークのサブフォルダ (pytorch, tensorflow or flax)、研究プロジェクト のサブフォルダ (それは研究プロジェクトの凍結されたスナップショットを含みます)、あるいはレガシー・サブフォルダに移動したかもしれません、
できる限り多くのユースケースを提示しようと努力する一方で、このフォルダのスクリプトは単なるサンプルです。それらは貴方の特定の問題にそのままでは動作しませんし、要求に適応させるためには数行のコードの変更が必要とされることが想定されます。それを助けるために、殆どのサンプルはデータの前処理を完全に公開しています。このようにして、貴方はそれらを容易に調整できます。
貴方がスクリプトに現在使用しているものとは異なる別のメトリックをレポートすることを望む場合も、同様です : スクリプト内の compute_metrics 関数を見てください。それは予測とラベルの完全な配列を取り文字列キーと float 値の辞書を返す必要があります。既にレポートされているものに貴方自身のメトリックを追加するためにそれを単に変更するか置き換えてください。
サンプルで実装して欲しい機能は PR を提出する前に フォーラム か issue で議論してください : バグ修正は歓迎しますがサンプルをできる限り単純に保持したいので、可読性を犠牲にしてより多くの機能を追加するためにプルリクエストをマージすることは殆どないでしょう。
重要な注意点
サンプルスクリプトの最新バージョンを成功的に実行できることを確実にするには、ライブラリをソースからインストールして幾つかのサンプル固有の requirements をインストールする必要があります。これを行なうには、新しい仮想環境で以下のステップを実行します :
git clone https://github.com/huggingface/transformers
cd transformers
pip install .
そして選択した example フォルダに cd して次を実行します :
pip install -r requirements.txt
Transformers のリリースされたバージョンに対応する examples をブラウザするには、下の行をクリックしてからライブラリの望まれるバージョンの上でクリックします :
Examples for older versions of Transformers - [v4.5.1](https://github.com/huggingface/transformers/tree/v4.5.1/examples) - [v4.4.2](https://github.com/huggingface/transformers/tree/v4.4.2/examples) - [v4.3.3](https://github.com/huggingface/transformers/tree/v4.3.3/examples) - [v4.2.2](https://github.com/huggingface/transformers/tree/v4.2.2/examples) - [v4.1.1](https://github.com/huggingface/transformers/tree/v4.1.1/examples) - [v4.0.1](https://github.com/huggingface/transformers/tree/v4.0.1/examples) - [v3.5.1](https://github.com/huggingface/transformers/tree/v3.5.1/examples) - [v3.4.0](https://github.com/huggingface/transformers/tree/v3.4.0/examples) - [v3.3.1](https://github.com/huggingface/transformers/tree/v3.3.1/examples) - [v3.2.0](https://github.com/huggingface/transformers/tree/v3.2.0/examples) - [v3.1.0](https://github.com/huggingface/transformers/tree/v3.1.0/examples) - [v3.0.2](https://github.com/huggingface/transformers/tree/v3.0.2/examples) - [v2.11.0](https://github.com/huggingface/transformers/tree/v2.11.0/examples) - [v2.10.0](https://github.com/huggingface/transformers/tree/v2.10.0/examples) - [v2.9.1](https://github.com/huggingface/transformers/tree/v2.9.1/examples) - [v2.8.0](https://github.com/huggingface/transformers/tree/v2.8.0/examples) - [v2.7.0](https://github.com/huggingface/transformers/tree/v2.7.0/examples) - [v2.6.0](https://github.com/huggingface/transformers/tree/v2.6.0/examples) - [v2.5.1](https://github.com/huggingface/transformers/tree/v2.5.1/examples) - [v2.4.0](https://github.com/huggingface/transformers/tree/v2.4.0/examples) - [v2.3.0](https://github.com/huggingface/transformers/tree/v2.3.0/examples) - [v2.2.0](https://github.com/huggingface/transformers/tree/v2.2.0/examples) - [v2.1.1](https://github.com/huggingface/transformers/tree/v2.1.0/examples) - [v2.0.0](https://github.com/huggingface/transformers/tree/v2.0.0/examples) - [v1.2.0](https://github.com/huggingface/transformers/tree/v1.2.0/examples) - [v1.1.0](https://github.com/huggingface/transformers/tree/v1.1.0/examples) - [v1.0.0](https://github.com/huggingface/transformers/tree/v1.0.0/examples)
代わりに、クローンされた Transformers を次で特定のバージョン (例えば v3.5.1) に切り替えた後で :
git checkout tags/v3.5.1
通常のようにサンプルコマンドを実行できます。
以上