PyTorch Lightning 1.1: research : CIFAR100 (GoogLeNet)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/25/2021 (1.1.x)
* 本ページは以下の CIFAR10 用リソースを参考に CIFAR100 で遂行した実験結果のレポートです:
- notebooks : PyTorch Lightning CIFAR10 ~94% Baseline Tutorial
- Train CIFAR10 with PyTorch
- Pytorch-cifar100
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
★ 無料セミナー実施中 ★ クラスキャット主催 人工知能 & ビジネス Web セミナー
人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
- Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :
人工知能研究開発支援 | 人工知能研修サービス | テレワーク & オンライン授業を支援 |
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。) |
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション |
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/ |
Facebook: https://www.facebook.com/ClassCatJP/ |
research: CIFAR100 (GoogLeNet)
仕様
- Total params: 6,402,564 (6.4M)
- Trainable params: 6,402,564
- Non-trainable params: 0
結果
- GoogLeNet
- {‘test_acc’: 0.7184000015258789, ‘test_loss’: 1.179699182510376}
- 100 エポック ; Wall time: 2h 23min 33s
- Tesla T4
- ReduceLROnPlateau
CIFAR 100 DM
from typing import Any, Callable, Optional, Sequence, Union from pl_bolts.datamodules.vision_datamodule import VisionDataModule #from pl_bolts.datasets import TrialCIFAR10 #from pl_bolts.transforms.dataset_normalizations import cifar10_normalization from pl_bolts.utils import _TORCHVISION_AVAILABLE from pl_bolts.utils.warnings import warn_missing_pkg if _TORCHVISION_AVAILABLE: from torchvision import transforms #from torchvision import transforms as transform_lib from torchvision.datasets import CIFAR100 else: # pragma: no cover warn_missing_pkg('torchvision') CIFAR100 = None
def cifar100_normalization(): if not _TORCHVISION_AVAILABLE: # pragma: no cover raise ModuleNotFoundError( 'You want to use `torchvision` which is not installed yet, install it with `pip install torchvision`.' ) normalize = transforms.Normalize( mean=[x / 255.0 for x in [129.3, 124.1, 112.4]], std=[x / 255.0 for x in [68.2, 65.4, 70.4]], # cifar10 #mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], #std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ) return normalize
class CIFAR100DataModule(VisionDataModule): """ .. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/ Plot-of-a-Subset-of-Images-from-the-CIFAR-10-Dataset.png :width: 400 :alt: CIFAR-10 Specs: - 10 classes (1 per class) - Each image is (3 x 32 x 32) Standard CIFAR10, train, val, test splits and transforms Transforms:: mnist_transforms = transform_lib.Compose([ transform_lib.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]] ) ]) Example:: from pl_bolts.datamodules import CIFAR10DataModule dm = CIFAR10DataModule(PATH) model = LitModel() Trainer().fit(model, datamodule=dm) Or you can set your own transforms Example:: dm.train_transforms = ... dm.test_transforms = ... dm.val_transforms = ... """ name = "cifar100" dataset_cls = CIFAR100 dims = (3, 32, 32) def __init__( self, data_dir: Optional[str] = None, val_split: Union[int, float] = 0.2, num_workers: int = 16, normalize: bool = False, batch_size: int = 32, seed: int = 42, shuffle: bool = False, pin_memory: bool = False, drop_last: bool = False, *args: Any, **kwargs: Any, ) -> None: """ Args: data_dir: Where to save/load the data val_split: Percent (float) or number (int) of samples to use for the validation split num_workers: How many workers to use for loading data normalize: If true applies image normalize batch_size: How many samples per batch to load seed: Random seed to be used for train/val/test splits shuffle: If true shuffles the train data every epoch pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before returning them drop_last: If true drops the last incomplete batch """ super().__init__( # type: ignore[misc] data_dir=data_dir, val_split=val_split, num_workers=num_workers, normalize=normalize, batch_size=batch_size, seed=seed, shuffle=shuffle, pin_memory=pin_memory, drop_last=drop_last, *args, **kwargs, ) @property def num_samples(self) -> int: train_len, _ = self._get_splits(len_dataset=50_000) return train_len @property def num_classes(self) -> int: """ Return: 10 """ return 100 def default_transforms(self) -> Callable: if self.normalize: cf100_transforms = transforms.Compose([transform_lib.ToTensor(), cifar100_normalization()]) else: cf100_transforms = transforms.Compose([transform_lib.ToTensor()]) return cf100_transforms
モデル
import torch import torch.nn as nn
class Inception(nn.Module): def __init__(self, input_channels, n1x1, n3x3_reduce, n3x3, n5x5_reduce, n5x5, pool_proj): super().__init__() #1x1conv branch self.b1 = nn.Sequential( nn.Conv2d(input_channels, n1x1, kernel_size=1), nn.BatchNorm2d(n1x1), nn.ReLU(inplace=True) ) #1x1conv -> 3x3conv branch self.b2 = nn.Sequential( nn.Conv2d(input_channels, n3x3_reduce, kernel_size=1), nn.BatchNorm2d(n3x3_reduce), nn.ReLU(inplace=True), nn.Conv2d(n3x3_reduce, n3x3, kernel_size=3, padding=1), nn.BatchNorm2d(n3x3), nn.ReLU(inplace=True) ) #1x1conv -> 5x5conv branch #we use 2 3x3 conv filters stacked instead #of 1 5x5 filters to obtain the same receptive #field with fewer parameters self.b3 = nn.Sequential( nn.Conv2d(input_channels, n5x5_reduce, kernel_size=1), nn.BatchNorm2d(n5x5_reduce), nn.ReLU(inplace=True), nn.Conv2d(n5x5_reduce, n5x5, kernel_size=3, padding=1), nn.BatchNorm2d(n5x5, n5x5), nn.ReLU(inplace=True), nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1), nn.BatchNorm2d(n5x5), nn.ReLU(inplace=True) ) #3x3pooling -> 1x1conv #same conv self.b4 = nn.Sequential( nn.MaxPool2d(3, stride=1, padding=1), nn.Conv2d(input_channels, pool_proj, kernel_size=1), nn.BatchNorm2d(pool_proj), nn.ReLU(inplace=True) ) def forward(self, x): return torch.cat([self.b1(x), self.b2(x), self.b3(x), self.b4(x)], dim=1) class GoogleNet(nn.Module): def __init__(self, num_class=100): super().__init__() self.prelayer = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 192, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(192), nn.ReLU(inplace=True), ) #although we only use 1 conv layer as prelayer, #we still use name a3, b3....... self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) ##"""In general, an Inception network is a network consisting of ##modules of the above type stacked upon each other, with occasional ##max-pooling layers with stride 2 to halve the resolution of the ##grid""" self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) #input feature size: 8*8*1024 self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout2d(p=0.4) self.linear = nn.Linear(1024, num_class) def forward(self, x): x = self.prelayer(x) x = self.maxpool(x) x = self.a3(x) x = self.b3(x) x = self.maxpool(x) x = self.a4(x) x = self.b4(x) x = self.c4(x) x = self.d4(x) x = self.e4(x) x = self.maxpool(x) x = self.a5(x) x = self.b5(x) #"""It was found that a move from fully connected layers to #average pooling improved the top-1 accuracy by about 0.6%, #however the use of dropout remained essential even after #removing the fully connected layers.""" x = self.avgpool(x) x = self.dropout(x) x = x.view(x.size()[0], -1) x = self.linear(x) return x def googlenet(): return GoogleNet()
net = googlenet() print(net) y = net(torch.randn(1, 3, 32, 32)) print(y.size())
GoogleNet( (prelayer): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) (6): Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (7): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU(inplace=True) ) (a3): Inception( (b1): Sequential( (0): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (b2): Sequential( (0): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) ) (b3): Sequential( (0): Conv2d(192, 16, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(32, eps=32, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) (6): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU(inplace=True) ) (b4): Sequential( (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1)) (2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) ) ) (b3): Inception( (b1): Sequential( (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (b2): Sequential( (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(128, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) ) (b3): Sequential( (0): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(32, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(96, eps=96, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) (6): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU(inplace=True) ) (b4): Sequential( (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1)) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) ) ) (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (a4): Inception( (b1): Sequential( (0): Conv2d(480, 192, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (b2): Sequential( (0): Conv2d(480, 96, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(96, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) ) (b3): Sequential( (0): Conv2d(480, 16, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(16, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(48, eps=48, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) (6): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU(inplace=True) ) (b4): Sequential( (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv2d(480, 64, kernel_size=(1, 1), stride=(1, 1)) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) ) ) (b4): Inception( (b1): Sequential( (0): Conv2d(512, 160, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (b2): Sequential( (0): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(112, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) ) (b3): Sequential( (0): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(24, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(64, eps=64, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) (6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU(inplace=True) ) (b4): Sequential( (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1)) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) ) ) (c4): Inception( (b1): Sequential( (0): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (b2): Sequential( (0): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) ) (b3): Sequential( (0): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(24, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(64, eps=64, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) (6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU(inplace=True) ) (b4): Sequential( (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1)) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) ) ) (d4): Inception( (b1): Sequential( (0): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (b2): Sequential( (0): Conv2d(512, 144, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(144, 288, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) ) (b3): Sequential( (0): Conv2d(512, 32, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(64, eps=64, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) (6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU(inplace=True) ) (b4): Sequential( (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1)) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) ) ) (e4): Inception( (b1): Sequential( (0): Conv2d(528, 256, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (b2): Sequential( (0): Conv2d(528, 160, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) ) (b3): Sequential( (0): Conv2d(528, 32, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(128, eps=128, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) (6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU(inplace=True) ) (b4): Sequential( (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv2d(528, 128, kernel_size=(1, 1), stride=(1, 1)) (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) ) ) (a5): Inception( (b1): Sequential( (0): Conv2d(832, 256, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (b2): Sequential( (0): Conv2d(832, 160, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) ) (b3): Sequential( (0): Conv2d(832, 32, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(128, eps=128, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) (6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU(inplace=True) ) (b4): Sequential( (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1)) (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) ) ) (b5): Inception( (b1): Sequential( (0): Conv2d(832, 384, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (b2): Sequential( (0): Conv2d(832, 192, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) ) (b3): Sequential( (0): Conv2d(832, 48, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): Conv2d(48, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(128, eps=128, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU(inplace=True) (6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU(inplace=True) ) (b4): Sequential( (0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False) (1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1)) (2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) ) ) (avgpool): AdaptiveAvgPool2d(output_size=(1, 1)) (dropout): Dropout2d(p=0.4, inplace=False) (linear): Linear(in_features=1024, out_features=100, bias=True) ) torch.Size([1, 100])
from torchsummary import summary summary(googlenet().to('cuda'), (3, 32, 32))
---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 64, 32, 32] 1,728 BatchNorm2d-2 [-1, 64, 32, 32] 128 ReLU-3 [-1, 64, 32, 32] 0 Conv2d-4 [-1, 64, 32, 32] 36,864 BatchNorm2d-5 [-1, 64, 32, 32] 128 ReLU-6 [-1, 64, 32, 32] 0 Conv2d-7 [-1, 192, 32, 32] 110,592 BatchNorm2d-8 [-1, 192, 32, 32] 384 ReLU-9 [-1, 192, 32, 32] 0 MaxPool2d-10 [-1, 192, 16, 16] 0 Conv2d-11 [-1, 64, 16, 16] 12,352 BatchNorm2d-12 [-1, 64, 16, 16] 128 ReLU-13 [-1, 64, 16, 16] 0 Conv2d-14 [-1, 96, 16, 16] 18,528 BatchNorm2d-15 [-1, 96, 16, 16] 192 ReLU-16 [-1, 96, 16, 16] 0 Conv2d-17 [-1, 128, 16, 16] 110,720 BatchNorm2d-18 [-1, 128, 16, 16] 256 ReLU-19 [-1, 128, 16, 16] 0 Conv2d-20 [-1, 16, 16, 16] 3,088 BatchNorm2d-21 [-1, 16, 16, 16] 32 ReLU-22 [-1, 16, 16, 16] 0 Conv2d-23 [-1, 32, 16, 16] 4,640 BatchNorm2d-24 [-1, 32, 16, 16] 64 ReLU-25 [-1, 32, 16, 16] 0 Conv2d-26 [-1, 32, 16, 16] 9,248 BatchNorm2d-27 [-1, 32, 16, 16] 64 ReLU-28 [-1, 32, 16, 16] 0 MaxPool2d-29 [-1, 192, 16, 16] 0 Conv2d-30 [-1, 32, 16, 16] 6,176 BatchNorm2d-31 [-1, 32, 16, 16] 64 ReLU-32 [-1, 32, 16, 16] 0 Inception-33 [-1, 256, 16, 16] 0 Conv2d-34 [-1, 128, 16, 16] 32,896 BatchNorm2d-35 [-1, 128, 16, 16] 256 ReLU-36 [-1, 128, 16, 16] 0 Conv2d-37 [-1, 128, 16, 16] 32,896 BatchNorm2d-38 [-1, 128, 16, 16] 256 ReLU-39 [-1, 128, 16, 16] 0 Conv2d-40 [-1, 192, 16, 16] 221,376 BatchNorm2d-41 [-1, 192, 16, 16] 384 ReLU-42 [-1, 192, 16, 16] 0 Conv2d-43 [-1, 32, 16, 16] 8,224 BatchNorm2d-44 [-1, 32, 16, 16] 64 ReLU-45 [-1, 32, 16, 16] 0 Conv2d-46 [-1, 96, 16, 16] 27,744 BatchNorm2d-47 [-1, 96, 16, 16] 192 ReLU-48 [-1, 96, 16, 16] 0 Conv2d-49 [-1, 96, 16, 16] 83,040 BatchNorm2d-50 [-1, 96, 16, 16] 192 ReLU-51 [-1, 96, 16, 16] 0 MaxPool2d-52 [-1, 256, 16, 16] 0 Conv2d-53 [-1, 64, 16, 16] 16,448 BatchNorm2d-54 [-1, 64, 16, 16] 128 ReLU-55 [-1, 64, 16, 16] 0 Inception-56 [-1, 480, 16, 16] 0 MaxPool2d-57 [-1, 480, 8, 8] 0 Conv2d-58 [-1, 192, 8, 8] 92,352 BatchNorm2d-59 [-1, 192, 8, 8] 384 ReLU-60 [-1, 192, 8, 8] 0 Conv2d-61 [-1, 96, 8, 8] 46,176 BatchNorm2d-62 [-1, 96, 8, 8] 192 ReLU-63 [-1, 96, 8, 8] 0 Conv2d-64 [-1, 208, 8, 8] 179,920 BatchNorm2d-65 [-1, 208, 8, 8] 416 ReLU-66 [-1, 208, 8, 8] 0 Conv2d-67 [-1, 16, 8, 8] 7,696 BatchNorm2d-68 [-1, 16, 8, 8] 32 ReLU-69 [-1, 16, 8, 8] 0 Conv2d-70 [-1, 48, 8, 8] 6,960 BatchNorm2d-71 [-1, 48, 8, 8] 96 ReLU-72 [-1, 48, 8, 8] 0 Conv2d-73 [-1, 48, 8, 8] 20,784 BatchNorm2d-74 [-1, 48, 8, 8] 96 ReLU-75 [-1, 48, 8, 8] 0 MaxPool2d-76 [-1, 480, 8, 8] 0 Conv2d-77 [-1, 64, 8, 8] 30,784 BatchNorm2d-78 [-1, 64, 8, 8] 128 ReLU-79 [-1, 64, 8, 8] 0 Inception-80 [-1, 512, 8, 8] 0 Conv2d-81 [-1, 160, 8, 8] 82,080 BatchNorm2d-82 [-1, 160, 8, 8] 320 ReLU-83 [-1, 160, 8, 8] 0 Conv2d-84 [-1, 112, 8, 8] 57,456 BatchNorm2d-85 [-1, 112, 8, 8] 224 ReLU-86 [-1, 112, 8, 8] 0 Conv2d-87 [-1, 224, 8, 8] 226,016 BatchNorm2d-88 [-1, 224, 8, 8] 448 ReLU-89 [-1, 224, 8, 8] 0 Conv2d-90 [-1, 24, 8, 8] 12,312 BatchNorm2d-91 [-1, 24, 8, 8] 48 ReLU-92 [-1, 24, 8, 8] 0 Conv2d-93 [-1, 64, 8, 8] 13,888 BatchNorm2d-94 [-1, 64, 8, 8] 128 ReLU-95 [-1, 64, 8, 8] 0 Conv2d-96 [-1, 64, 8, 8] 36,928 BatchNorm2d-97 [-1, 64, 8, 8] 128 ReLU-98 [-1, 64, 8, 8] 0 MaxPool2d-99 [-1, 512, 8, 8] 0 Conv2d-100 [-1, 64, 8, 8] 32,832 BatchNorm2d-101 [-1, 64, 8, 8] 128 ReLU-102 [-1, 64, 8, 8] 0 Inception-103 [-1, 512, 8, 8] 0 Conv2d-104 [-1, 128, 8, 8] 65,664 BatchNorm2d-105 [-1, 128, 8, 8] 256 ReLU-106 [-1, 128, 8, 8] 0 Conv2d-107 [-1, 128, 8, 8] 65,664 BatchNorm2d-108 [-1, 128, 8, 8] 256 ReLU-109 [-1, 128, 8, 8] 0 Conv2d-110 [-1, 256, 8, 8] 295,168 BatchNorm2d-111 [-1, 256, 8, 8] 512 ReLU-112 [-1, 256, 8, 8] 0 Conv2d-113 [-1, 24, 8, 8] 12,312 BatchNorm2d-114 [-1, 24, 8, 8] 48 ReLU-115 [-1, 24, 8, 8] 0 Conv2d-116 [-1, 64, 8, 8] 13,888 BatchNorm2d-117 [-1, 64, 8, 8] 128 ReLU-118 [-1, 64, 8, 8] 0 Conv2d-119 [-1, 64, 8, 8] 36,928 BatchNorm2d-120 [-1, 64, 8, 8] 128 ReLU-121 [-1, 64, 8, 8] 0 MaxPool2d-122 [-1, 512, 8, 8] 0 Conv2d-123 [-1, 64, 8, 8] 32,832 BatchNorm2d-124 [-1, 64, 8, 8] 128 ReLU-125 [-1, 64, 8, 8] 0 Inception-126 [-1, 512, 8, 8] 0 Conv2d-127 [-1, 112, 8, 8] 57,456 BatchNorm2d-128 [-1, 112, 8, 8] 224 ReLU-129 [-1, 112, 8, 8] 0 Conv2d-130 [-1, 144, 8, 8] 73,872 BatchNorm2d-131 [-1, 144, 8, 8] 288 ReLU-132 [-1, 144, 8, 8] 0 Conv2d-133 [-1, 288, 8, 8] 373,536 BatchNorm2d-134 [-1, 288, 8, 8] 576 ReLU-135 [-1, 288, 8, 8] 0 Conv2d-136 [-1, 32, 8, 8] 16,416 BatchNorm2d-137 [-1, 32, 8, 8] 64 ReLU-138 [-1, 32, 8, 8] 0 Conv2d-139 [-1, 64, 8, 8] 18,496 BatchNorm2d-140 [-1, 64, 8, 8] 128 ReLU-141 [-1, 64, 8, 8] 0 Conv2d-142 [-1, 64, 8, 8] 36,928 BatchNorm2d-143 [-1, 64, 8, 8] 128 ReLU-144 [-1, 64, 8, 8] 0 MaxPool2d-145 [-1, 512, 8, 8] 0 Conv2d-146 [-1, 64, 8, 8] 32,832 BatchNorm2d-147 [-1, 64, 8, 8] 128 ReLU-148 [-1, 64, 8, 8] 0 Inception-149 [-1, 528, 8, 8] 0 Conv2d-150 [-1, 256, 8, 8] 135,424 BatchNorm2d-151 [-1, 256, 8, 8] 512 ReLU-152 [-1, 256, 8, 8] 0 Conv2d-153 [-1, 160, 8, 8] 84,640 BatchNorm2d-154 [-1, 160, 8, 8] 320 ReLU-155 [-1, 160, 8, 8] 0 Conv2d-156 [-1, 320, 8, 8] 461,120 BatchNorm2d-157 [-1, 320, 8, 8] 640 ReLU-158 [-1, 320, 8, 8] 0 Conv2d-159 [-1, 32, 8, 8] 16,928 BatchNorm2d-160 [-1, 32, 8, 8] 64 ReLU-161 [-1, 32, 8, 8] 0 Conv2d-162 [-1, 128, 8, 8] 36,992 BatchNorm2d-163 [-1, 128, 8, 8] 256 ReLU-164 [-1, 128, 8, 8] 0 Conv2d-165 [-1, 128, 8, 8] 147,584 BatchNorm2d-166 [-1, 128, 8, 8] 256 ReLU-167 [-1, 128, 8, 8] 0 MaxPool2d-168 [-1, 528, 8, 8] 0 Conv2d-169 [-1, 128, 8, 8] 67,712 BatchNorm2d-170 [-1, 128, 8, 8] 256 ReLU-171 [-1, 128, 8, 8] 0 Inception-172 [-1, 832, 8, 8] 0 MaxPool2d-173 [-1, 832, 4, 4] 0 Conv2d-174 [-1, 256, 4, 4] 213,248 BatchNorm2d-175 [-1, 256, 4, 4] 512 ReLU-176 [-1, 256, 4, 4] 0 Conv2d-177 [-1, 160, 4, 4] 133,280 BatchNorm2d-178 [-1, 160, 4, 4] 320 ReLU-179 [-1, 160, 4, 4] 0 Conv2d-180 [-1, 320, 4, 4] 461,120 BatchNorm2d-181 [-1, 320, 4, 4] 640 ReLU-182 [-1, 320, 4, 4] 0 Conv2d-183 [-1, 32, 4, 4] 26,656 BatchNorm2d-184 [-1, 32, 4, 4] 64 ReLU-185 [-1, 32, 4, 4] 0 Conv2d-186 [-1, 128, 4, 4] 36,992 BatchNorm2d-187 [-1, 128, 4, 4] 256 ReLU-188 [-1, 128, 4, 4] 0 Conv2d-189 [-1, 128, 4, 4] 147,584 BatchNorm2d-190 [-1, 128, 4, 4] 256 ReLU-191 [-1, 128, 4, 4] 0 MaxPool2d-192 [-1, 832, 4, 4] 0 Conv2d-193 [-1, 128, 4, 4] 106,624 BatchNorm2d-194 [-1, 128, 4, 4] 256 ReLU-195 [-1, 128, 4, 4] 0 Inception-196 [-1, 832, 4, 4] 0 Conv2d-197 [-1, 384, 4, 4] 319,872 BatchNorm2d-198 [-1, 384, 4, 4] 768 ReLU-199 [-1, 384, 4, 4] 0 Conv2d-200 [-1, 192, 4, 4] 159,936 BatchNorm2d-201 [-1, 192, 4, 4] 384 ReLU-202 [-1, 192, 4, 4] 0 Conv2d-203 [-1, 384, 4, 4] 663,936 BatchNorm2d-204 [-1, 384, 4, 4] 768 ReLU-205 [-1, 384, 4, 4] 0 Conv2d-206 [-1, 48, 4, 4] 39,984 BatchNorm2d-207 [-1, 48, 4, 4] 96 ReLU-208 [-1, 48, 4, 4] 0 Conv2d-209 [-1, 128, 4, 4] 55,424 BatchNorm2d-210 [-1, 128, 4, 4] 256 ReLU-211 [-1, 128, 4, 4] 0 Conv2d-212 [-1, 128, 4, 4] 147,584 BatchNorm2d-213 [-1, 128, 4, 4] 256 ReLU-214 [-1, 128, 4, 4] 0 MaxPool2d-215 [-1, 832, 4, 4] 0 Conv2d-216 [-1, 128, 4, 4] 106,624 BatchNorm2d-217 [-1, 128, 4, 4] 256 ReLU-218 [-1, 128, 4, 4] 0 Inception-219 [-1, 1024, 4, 4] 0 AdaptiveAvgPool2d-220 [-1, 1024, 1, 1] 0 Dropout2d-221 [-1, 1024, 1, 1] 0 Linear-222 [-1, 100] 102,500 ================================================================ Total params: 6,402,564 Trainable params: 6,402,564 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.01 Forward/backward pass size (MB): 27.12 Params size (MB): 24.42 Estimated Total Size (MB): 51.56 ----------------------------------------------------------------
Lightning モジュール
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau from torch.optim.swa_utils import AveragedModel, update_bn import torchvision import pytorch_lightning as pl from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping from pytorch_lightning.metrics.functional import accuracy #from pl_bolts.datamodules import CIFAR10DataModule #from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
batch_size = 50 train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomCrop(32, padding=4), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), cifar100_normalization(), ]) test_transforms = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), cifar100_normalization(), ]) cifar100_dm = CIFAR100DataModule( batch_size=batch_size, num_workers=8, train_transforms=train_transforms, test_transforms=test_transforms, val_transforms=test_transforms, )
class LitCifar100(pl.LightningModule): def __init__(self, lr=0.05, factor=0.8): super().__init__() self.save_hyperparameters() self.model = googlenet() def forward(self, x): out = self.model(x) return F.log_softmax(out, dim=1) def training_step(self, batch, batch_idx): x, y = batch logits = F.log_softmax(self.model(x), dim=1) loss = F.nll_loss(logits, y) self.log('train_loss', loss) return loss def evaluate(self, batch, stage=None): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) if stage: self.log(f'{stage}_loss', loss, prog_bar=True) self.log(f'{stage}_acc', acc, prog_bar=True) def validation_step(self, batch, batch_idx): self.evaluate(batch, 'val') def test_step(self, batch, batch_idx): self.evaluate(batch, 'test') def configure_optimizers(self): optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4) return { 'optimizer': optimizer, 'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=5, factor=self.hparams.factor, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5), 'monitor': 'val_acc' }
訓練 / 評価
%%time model = LitCifar100(lr=0.05, factor=0.5) model.datamodule = cifar100_dm trainer = pl.Trainer( gpus=1, max_epochs=100, progress_bar_refresh_rate=100, logger=pl.loggers.TensorBoardLogger('tblogs/', name='googlenet'), callbacks=[LearningRateMonitor(logging_interval='step')], ) trainer.fit(model, cifar100_dm) trainer.test(model, datamodule=cifar100_dm);
| Name | Type | Params | Name | Type | Params ------------------------------------ 0 | model | GoogleNet | 6.4 M ------------------------------------ 6.4 M Trainable params 0 Non-trainable params 6.4 M Total params 25.610 Total estimated model params size (MB) (...) Epoch 27: reducing learning rate of group 0 to 2.5000e-02. Epoch 34: reducing learning rate of group 0 to 1.2500e-02. Epoch 41: reducing learning rate of group 0 to 6.2500e-03. Epoch 49: reducing learning rate of group 0 to 3.1250e-03. Epoch 58: reducing learning rate of group 0 to 1.5625e-03. Epoch 77: reducing learning rate of group 0 to 7.8125e-04. Epoch 98: reducing learning rate of group 0 to 3.9063e-04. (...) -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.7184000015258789, 'test_loss': 1.179699182510376} -------------------------------------------------------------------------------- CPU times: user 1h 52min 54s, sys: 26min 55s, total: 2h 19min 50s Wall time: 2h 23min 33s
以上