PyTorch Lightning 1.1: research : CIFAR100 (GoogLeNet)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/25/2021 (1.1.x)
* 本ページは以下の CIFAR10 用リソースを参考に CIFAR100 で遂行した実験結果のレポートです:
- notebooks : PyTorch Lightning CIFAR10 ~94% Baseline Tutorial
- Train CIFAR10 with PyTorch
- Pytorch-cifar100
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
★ 無料セミナー実施中 ★ クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
- Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :
| 人工知能研究開発支援 | 人工知能研修サービス | テレワーク & オンライン授業を支援 |
| PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。) | ||
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
| 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション |
| E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/ |
| Facebook: https://www.facebook.com/ClassCatJP/ |
research: CIFAR100 (GoogLeNet)
仕様
- Total params: 6,402,564 (6.4M)
- Trainable params: 6,402,564
- Non-trainable params: 0
結果
- GoogLeNet
- {‘test_acc’: 0.7184000015258789, ‘test_loss’: 1.179699182510376}
- 100 エポック ; Wall time: 2h 23min 33s
- Tesla T4
- ReduceLROnPlateau
CIFAR 100 DM
from typing import Any, Callable, Optional, Sequence, Union
from pl_bolts.datamodules.vision_datamodule import VisionDataModule
#from pl_bolts.datasets import TrialCIFAR10
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pl_bolts.utils import _TORCHVISION_AVAILABLE
from pl_bolts.utils.warnings import warn_missing_pkg
if _TORCHVISION_AVAILABLE:
from torchvision import transforms
#from torchvision import transforms as transform_lib
from torchvision.datasets import CIFAR100
else: # pragma: no cover
warn_missing_pkg('torchvision')
CIFAR100 = None
def cifar100_normalization():
if not _TORCHVISION_AVAILABLE: # pragma: no cover
raise ModuleNotFoundError(
'You want to use `torchvision` which is not installed yet, install it with `pip install torchvision`.'
)
normalize = transforms.Normalize(
mean=[x / 255.0 for x in [129.3, 124.1, 112.4]],
std=[x / 255.0 for x in [68.2, 65.4, 70.4]],
# cifar10
#mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
#std=[x / 255.0 for x in [63.0, 62.1, 66.7]],
)
return normalize
class CIFAR100DataModule(VisionDataModule):
"""
.. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/
Plot-of-a-Subset-of-Images-from-the-CIFAR-10-Dataset.png
:width: 400
:alt: CIFAR-10
Specs:
- 10 classes (1 per class)
- Each image is (3 x 32 x 32)
Standard CIFAR10, train, val, test splits and transforms
Transforms::
mnist_transforms = transform_lib.Compose([
transform_lib.ToTensor(),
transforms.Normalize(
mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]]
)
])
Example::
from pl_bolts.datamodules import CIFAR10DataModule
dm = CIFAR10DataModule(PATH)
model = LitModel()
Trainer().fit(model, datamodule=dm)
Or you can set your own transforms
Example::
dm.train_transforms = ...
dm.test_transforms = ...
dm.val_transforms = ...
"""
name = "cifar100"
dataset_cls = CIFAR100
dims = (3, 32, 32)
def __init__(
self,
data_dir: Optional[str] = None,
val_split: Union[int, float] = 0.2,
num_workers: int = 16,
normalize: bool = False,
batch_size: int = 32,
seed: int = 42,
shuffle: bool = False,
pin_memory: bool = False,
drop_last: bool = False,
*args: Any,
**kwargs: Any,
) -> None:
"""
Args:
data_dir: Where to save/load the data
val_split: Percent (float) or number (int) of samples to use for the validation split
num_workers: How many workers to use for loading data
normalize: If true applies image normalize
batch_size: How many samples per batch to load
seed: Random seed to be used for train/val/test splits
shuffle: If true shuffles the train data every epoch
pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before
returning them
drop_last: If true drops the last incomplete batch
"""
super().__init__( # type: ignore[misc]
data_dir=data_dir,
val_split=val_split,
num_workers=num_workers,
normalize=normalize,
batch_size=batch_size,
seed=seed,
shuffle=shuffle,
pin_memory=pin_memory,
drop_last=drop_last,
*args,
**kwargs,
)
@property
def num_samples(self) -> int:
train_len, _ = self._get_splits(len_dataset=50_000)
return train_len
@property
def num_classes(self) -> int:
"""
Return:
10
"""
return 100
def default_transforms(self) -> Callable:
if self.normalize:
cf100_transforms = transforms.Compose([transform_lib.ToTensor(), cifar100_normalization()])
else:
cf100_transforms = transforms.Compose([transform_lib.ToTensor()])
return cf100_transforms
モデル
import torch import torch.nn as nn
class Inception(nn.Module):
def __init__(self, input_channels, n1x1, n3x3_reduce, n3x3, n5x5_reduce, n5x5, pool_proj):
super().__init__()
#1x1conv branch
self.b1 = nn.Sequential(
nn.Conv2d(input_channels, n1x1, kernel_size=1),
nn.BatchNorm2d(n1x1),
nn.ReLU(inplace=True)
)
#1x1conv -> 3x3conv branch
self.b2 = nn.Sequential(
nn.Conv2d(input_channels, n3x3_reduce, kernel_size=1),
nn.BatchNorm2d(n3x3_reduce),
nn.ReLU(inplace=True),
nn.Conv2d(n3x3_reduce, n3x3, kernel_size=3, padding=1),
nn.BatchNorm2d(n3x3),
nn.ReLU(inplace=True)
)
#1x1conv -> 5x5conv branch
#we use 2 3x3 conv filters stacked instead
#of 1 5x5 filters to obtain the same receptive
#field with fewer parameters
self.b3 = nn.Sequential(
nn.Conv2d(input_channels, n5x5_reduce, kernel_size=1),
nn.BatchNorm2d(n5x5_reduce),
nn.ReLU(inplace=True),
nn.Conv2d(n5x5_reduce, n5x5, kernel_size=3, padding=1),
nn.BatchNorm2d(n5x5, n5x5),
nn.ReLU(inplace=True),
nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1),
nn.BatchNorm2d(n5x5),
nn.ReLU(inplace=True)
)
#3x3pooling -> 1x1conv
#same conv
self.b4 = nn.Sequential(
nn.MaxPool2d(3, stride=1, padding=1),
nn.Conv2d(input_channels, pool_proj, kernel_size=1),
nn.BatchNorm2d(pool_proj),
nn.ReLU(inplace=True)
)
def forward(self, x):
return torch.cat([self.b1(x), self.b2(x), self.b3(x), self.b4(x)], dim=1)
class GoogleNet(nn.Module):
def __init__(self, num_class=100):
super().__init__()
self.prelayer = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 192, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(192),
nn.ReLU(inplace=True),
)
#although we only use 1 conv layer as prelayer,
#we still use name a3, b3.......
self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)
##"""In general, an Inception network is a network consisting of
##modules of the above type stacked upon each other, with occasional
##max-pooling layers with stride 2 to halve the resolution of the
##grid"""
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)
self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)
#input feature size: 8*8*1024
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout2d(p=0.4)
self.linear = nn.Linear(1024, num_class)
def forward(self, x):
x = self.prelayer(x)
x = self.maxpool(x)
x = self.a3(x)
x = self.b3(x)
x = self.maxpool(x)
x = self.a4(x)
x = self.b4(x)
x = self.c4(x)
x = self.d4(x)
x = self.e4(x)
x = self.maxpool(x)
x = self.a5(x)
x = self.b5(x)
#"""It was found that a move from fully connected layers to
#average pooling improved the top-1 accuracy by about 0.6%,
#however the use of dropout remained essential even after
#removing the fully connected layers."""
x = self.avgpool(x)
x = self.dropout(x)
x = x.view(x.size()[0], -1)
x = self.linear(x)
return x
def googlenet():
return GoogleNet()
net = googlenet() print(net) y = net(torch.randn(1, 3, 32, 32)) print(y.size())
GoogleNet(
(prelayer): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(7): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
)
(a3): Inception(
(b1): Sequential(
(0): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(b2): Sequential(
(0): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(b3): Sequential(
(0): Conv2d(192, 16, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(32, eps=32, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
)
(b4): Sequential(
(0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))
(2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace=True)
)
)
(b3): Inception(
(b1): Sequential(
(0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(b2): Sequential(
(0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(128, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(b3): Sequential(
(0): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(32, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(96, eps=96, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
)
(b4): Sequential(
(0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace=True)
)
)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(a4): Inception(
(b1): Sequential(
(0): Conv2d(480, 192, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(b2): Sequential(
(0): Conv2d(480, 96, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(96, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(b3): Sequential(
(0): Conv2d(480, 16, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(16, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(48, eps=48, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
)
(b4): Sequential(
(0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv2d(480, 64, kernel_size=(1, 1), stride=(1, 1))
(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace=True)
)
)
(b4): Inception(
(b1): Sequential(
(0): Conv2d(512, 160, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(b2): Sequential(
(0): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(112, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(b3): Sequential(
(0): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(24, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(64, eps=64, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
)
(b4): Sequential(
(0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace=True)
)
)
(c4): Inception(
(b1): Sequential(
(0): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(b2): Sequential(
(0): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(b3): Sequential(
(0): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(24, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(64, eps=64, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
)
(b4): Sequential(
(0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace=True)
)
)
(d4): Inception(
(b1): Sequential(
(0): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(b2): Sequential(
(0): Conv2d(512, 144, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(144, 288, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(b3): Sequential(
(0): Conv2d(512, 32, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(64, eps=64, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
)
(b4): Sequential(
(0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace=True)
)
)
(e4): Inception(
(b1): Sequential(
(0): Conv2d(528, 256, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(b2): Sequential(
(0): Conv2d(528, 160, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(b3): Sequential(
(0): Conv2d(528, 32, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(128, eps=128, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
)
(b4): Sequential(
(0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv2d(528, 128, kernel_size=(1, 1), stride=(1, 1))
(2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace=True)
)
)
(a5): Inception(
(b1): Sequential(
(0): Conv2d(832, 256, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(b2): Sequential(
(0): Conv2d(832, 160, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(b3): Sequential(
(0): Conv2d(832, 32, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(128, eps=128, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
)
(b4): Sequential(
(0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1))
(2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace=True)
)
)
(b5): Inception(
(b1): Sequential(
(0): Conv2d(832, 384, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(b2): Sequential(
(0): Conv2d(832, 192, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
(b3): Sequential(
(0): Conv2d(832, 48, kernel_size=(1, 1), stride=(1, 1))
(1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(48, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(128, eps=128, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
)
(b4): Sequential(
(0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
(1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1))
(2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU(inplace=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(dropout): Dropout2d(p=0.4, inplace=False)
(linear): Linear(in_features=1024, out_features=100, bias=True)
)
torch.Size([1, 100])
from torchsummary import summary
summary(googlenet().to('cuda'), (3, 32, 32))
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 32, 32] 1,728
BatchNorm2d-2 [-1, 64, 32, 32] 128
ReLU-3 [-1, 64, 32, 32] 0
Conv2d-4 [-1, 64, 32, 32] 36,864
BatchNorm2d-5 [-1, 64, 32, 32] 128
ReLU-6 [-1, 64, 32, 32] 0
Conv2d-7 [-1, 192, 32, 32] 110,592
BatchNorm2d-8 [-1, 192, 32, 32] 384
ReLU-9 [-1, 192, 32, 32] 0
MaxPool2d-10 [-1, 192, 16, 16] 0
Conv2d-11 [-1, 64, 16, 16] 12,352
BatchNorm2d-12 [-1, 64, 16, 16] 128
ReLU-13 [-1, 64, 16, 16] 0
Conv2d-14 [-1, 96, 16, 16] 18,528
BatchNorm2d-15 [-1, 96, 16, 16] 192
ReLU-16 [-1, 96, 16, 16] 0
Conv2d-17 [-1, 128, 16, 16] 110,720
BatchNorm2d-18 [-1, 128, 16, 16] 256
ReLU-19 [-1, 128, 16, 16] 0
Conv2d-20 [-1, 16, 16, 16] 3,088
BatchNorm2d-21 [-1, 16, 16, 16] 32
ReLU-22 [-1, 16, 16, 16] 0
Conv2d-23 [-1, 32, 16, 16] 4,640
BatchNorm2d-24 [-1, 32, 16, 16] 64
ReLU-25 [-1, 32, 16, 16] 0
Conv2d-26 [-1, 32, 16, 16] 9,248
BatchNorm2d-27 [-1, 32, 16, 16] 64
ReLU-28 [-1, 32, 16, 16] 0
MaxPool2d-29 [-1, 192, 16, 16] 0
Conv2d-30 [-1, 32, 16, 16] 6,176
BatchNorm2d-31 [-1, 32, 16, 16] 64
ReLU-32 [-1, 32, 16, 16] 0
Inception-33 [-1, 256, 16, 16] 0
Conv2d-34 [-1, 128, 16, 16] 32,896
BatchNorm2d-35 [-1, 128, 16, 16] 256
ReLU-36 [-1, 128, 16, 16] 0
Conv2d-37 [-1, 128, 16, 16] 32,896
BatchNorm2d-38 [-1, 128, 16, 16] 256
ReLU-39 [-1, 128, 16, 16] 0
Conv2d-40 [-1, 192, 16, 16] 221,376
BatchNorm2d-41 [-1, 192, 16, 16] 384
ReLU-42 [-1, 192, 16, 16] 0
Conv2d-43 [-1, 32, 16, 16] 8,224
BatchNorm2d-44 [-1, 32, 16, 16] 64
ReLU-45 [-1, 32, 16, 16] 0
Conv2d-46 [-1, 96, 16, 16] 27,744
BatchNorm2d-47 [-1, 96, 16, 16] 192
ReLU-48 [-1, 96, 16, 16] 0
Conv2d-49 [-1, 96, 16, 16] 83,040
BatchNorm2d-50 [-1, 96, 16, 16] 192
ReLU-51 [-1, 96, 16, 16] 0
MaxPool2d-52 [-1, 256, 16, 16] 0
Conv2d-53 [-1, 64, 16, 16] 16,448
BatchNorm2d-54 [-1, 64, 16, 16] 128
ReLU-55 [-1, 64, 16, 16] 0
Inception-56 [-1, 480, 16, 16] 0
MaxPool2d-57 [-1, 480, 8, 8] 0
Conv2d-58 [-1, 192, 8, 8] 92,352
BatchNorm2d-59 [-1, 192, 8, 8] 384
ReLU-60 [-1, 192, 8, 8] 0
Conv2d-61 [-1, 96, 8, 8] 46,176
BatchNorm2d-62 [-1, 96, 8, 8] 192
ReLU-63 [-1, 96, 8, 8] 0
Conv2d-64 [-1, 208, 8, 8] 179,920
BatchNorm2d-65 [-1, 208, 8, 8] 416
ReLU-66 [-1, 208, 8, 8] 0
Conv2d-67 [-1, 16, 8, 8] 7,696
BatchNorm2d-68 [-1, 16, 8, 8] 32
ReLU-69 [-1, 16, 8, 8] 0
Conv2d-70 [-1, 48, 8, 8] 6,960
BatchNorm2d-71 [-1, 48, 8, 8] 96
ReLU-72 [-1, 48, 8, 8] 0
Conv2d-73 [-1, 48, 8, 8] 20,784
BatchNorm2d-74 [-1, 48, 8, 8] 96
ReLU-75 [-1, 48, 8, 8] 0
MaxPool2d-76 [-1, 480, 8, 8] 0
Conv2d-77 [-1, 64, 8, 8] 30,784
BatchNorm2d-78 [-1, 64, 8, 8] 128
ReLU-79 [-1, 64, 8, 8] 0
Inception-80 [-1, 512, 8, 8] 0
Conv2d-81 [-1, 160, 8, 8] 82,080
BatchNorm2d-82 [-1, 160, 8, 8] 320
ReLU-83 [-1, 160, 8, 8] 0
Conv2d-84 [-1, 112, 8, 8] 57,456
BatchNorm2d-85 [-1, 112, 8, 8] 224
ReLU-86 [-1, 112, 8, 8] 0
Conv2d-87 [-1, 224, 8, 8] 226,016
BatchNorm2d-88 [-1, 224, 8, 8] 448
ReLU-89 [-1, 224, 8, 8] 0
Conv2d-90 [-1, 24, 8, 8] 12,312
BatchNorm2d-91 [-1, 24, 8, 8] 48
ReLU-92 [-1, 24, 8, 8] 0
Conv2d-93 [-1, 64, 8, 8] 13,888
BatchNorm2d-94 [-1, 64, 8, 8] 128
ReLU-95 [-1, 64, 8, 8] 0
Conv2d-96 [-1, 64, 8, 8] 36,928
BatchNorm2d-97 [-1, 64, 8, 8] 128
ReLU-98 [-1, 64, 8, 8] 0
MaxPool2d-99 [-1, 512, 8, 8] 0
Conv2d-100 [-1, 64, 8, 8] 32,832
BatchNorm2d-101 [-1, 64, 8, 8] 128
ReLU-102 [-1, 64, 8, 8] 0
Inception-103 [-1, 512, 8, 8] 0
Conv2d-104 [-1, 128, 8, 8] 65,664
BatchNorm2d-105 [-1, 128, 8, 8] 256
ReLU-106 [-1, 128, 8, 8] 0
Conv2d-107 [-1, 128, 8, 8] 65,664
BatchNorm2d-108 [-1, 128, 8, 8] 256
ReLU-109 [-1, 128, 8, 8] 0
Conv2d-110 [-1, 256, 8, 8] 295,168
BatchNorm2d-111 [-1, 256, 8, 8] 512
ReLU-112 [-1, 256, 8, 8] 0
Conv2d-113 [-1, 24, 8, 8] 12,312
BatchNorm2d-114 [-1, 24, 8, 8] 48
ReLU-115 [-1, 24, 8, 8] 0
Conv2d-116 [-1, 64, 8, 8] 13,888
BatchNorm2d-117 [-1, 64, 8, 8] 128
ReLU-118 [-1, 64, 8, 8] 0
Conv2d-119 [-1, 64, 8, 8] 36,928
BatchNorm2d-120 [-1, 64, 8, 8] 128
ReLU-121 [-1, 64, 8, 8] 0
MaxPool2d-122 [-1, 512, 8, 8] 0
Conv2d-123 [-1, 64, 8, 8] 32,832
BatchNorm2d-124 [-1, 64, 8, 8] 128
ReLU-125 [-1, 64, 8, 8] 0
Inception-126 [-1, 512, 8, 8] 0
Conv2d-127 [-1, 112, 8, 8] 57,456
BatchNorm2d-128 [-1, 112, 8, 8] 224
ReLU-129 [-1, 112, 8, 8] 0
Conv2d-130 [-1, 144, 8, 8] 73,872
BatchNorm2d-131 [-1, 144, 8, 8] 288
ReLU-132 [-1, 144, 8, 8] 0
Conv2d-133 [-1, 288, 8, 8] 373,536
BatchNorm2d-134 [-1, 288, 8, 8] 576
ReLU-135 [-1, 288, 8, 8] 0
Conv2d-136 [-1, 32, 8, 8] 16,416
BatchNorm2d-137 [-1, 32, 8, 8] 64
ReLU-138 [-1, 32, 8, 8] 0
Conv2d-139 [-1, 64, 8, 8] 18,496
BatchNorm2d-140 [-1, 64, 8, 8] 128
ReLU-141 [-1, 64, 8, 8] 0
Conv2d-142 [-1, 64, 8, 8] 36,928
BatchNorm2d-143 [-1, 64, 8, 8] 128
ReLU-144 [-1, 64, 8, 8] 0
MaxPool2d-145 [-1, 512, 8, 8] 0
Conv2d-146 [-1, 64, 8, 8] 32,832
BatchNorm2d-147 [-1, 64, 8, 8] 128
ReLU-148 [-1, 64, 8, 8] 0
Inception-149 [-1, 528, 8, 8] 0
Conv2d-150 [-1, 256, 8, 8] 135,424
BatchNorm2d-151 [-1, 256, 8, 8] 512
ReLU-152 [-1, 256, 8, 8] 0
Conv2d-153 [-1, 160, 8, 8] 84,640
BatchNorm2d-154 [-1, 160, 8, 8] 320
ReLU-155 [-1, 160, 8, 8] 0
Conv2d-156 [-1, 320, 8, 8] 461,120
BatchNorm2d-157 [-1, 320, 8, 8] 640
ReLU-158 [-1, 320, 8, 8] 0
Conv2d-159 [-1, 32, 8, 8] 16,928
BatchNorm2d-160 [-1, 32, 8, 8] 64
ReLU-161 [-1, 32, 8, 8] 0
Conv2d-162 [-1, 128, 8, 8] 36,992
BatchNorm2d-163 [-1, 128, 8, 8] 256
ReLU-164 [-1, 128, 8, 8] 0
Conv2d-165 [-1, 128, 8, 8] 147,584
BatchNorm2d-166 [-1, 128, 8, 8] 256
ReLU-167 [-1, 128, 8, 8] 0
MaxPool2d-168 [-1, 528, 8, 8] 0
Conv2d-169 [-1, 128, 8, 8] 67,712
BatchNorm2d-170 [-1, 128, 8, 8] 256
ReLU-171 [-1, 128, 8, 8] 0
Inception-172 [-1, 832, 8, 8] 0
MaxPool2d-173 [-1, 832, 4, 4] 0
Conv2d-174 [-1, 256, 4, 4] 213,248
BatchNorm2d-175 [-1, 256, 4, 4] 512
ReLU-176 [-1, 256, 4, 4] 0
Conv2d-177 [-1, 160, 4, 4] 133,280
BatchNorm2d-178 [-1, 160, 4, 4] 320
ReLU-179 [-1, 160, 4, 4] 0
Conv2d-180 [-1, 320, 4, 4] 461,120
BatchNorm2d-181 [-1, 320, 4, 4] 640
ReLU-182 [-1, 320, 4, 4] 0
Conv2d-183 [-1, 32, 4, 4] 26,656
BatchNorm2d-184 [-1, 32, 4, 4] 64
ReLU-185 [-1, 32, 4, 4] 0
Conv2d-186 [-1, 128, 4, 4] 36,992
BatchNorm2d-187 [-1, 128, 4, 4] 256
ReLU-188 [-1, 128, 4, 4] 0
Conv2d-189 [-1, 128, 4, 4] 147,584
BatchNorm2d-190 [-1, 128, 4, 4] 256
ReLU-191 [-1, 128, 4, 4] 0
MaxPool2d-192 [-1, 832, 4, 4] 0
Conv2d-193 [-1, 128, 4, 4] 106,624
BatchNorm2d-194 [-1, 128, 4, 4] 256
ReLU-195 [-1, 128, 4, 4] 0
Inception-196 [-1, 832, 4, 4] 0
Conv2d-197 [-1, 384, 4, 4] 319,872
BatchNorm2d-198 [-1, 384, 4, 4] 768
ReLU-199 [-1, 384, 4, 4] 0
Conv2d-200 [-1, 192, 4, 4] 159,936
BatchNorm2d-201 [-1, 192, 4, 4] 384
ReLU-202 [-1, 192, 4, 4] 0
Conv2d-203 [-1, 384, 4, 4] 663,936
BatchNorm2d-204 [-1, 384, 4, 4] 768
ReLU-205 [-1, 384, 4, 4] 0
Conv2d-206 [-1, 48, 4, 4] 39,984
BatchNorm2d-207 [-1, 48, 4, 4] 96
ReLU-208 [-1, 48, 4, 4] 0
Conv2d-209 [-1, 128, 4, 4] 55,424
BatchNorm2d-210 [-1, 128, 4, 4] 256
ReLU-211 [-1, 128, 4, 4] 0
Conv2d-212 [-1, 128, 4, 4] 147,584
BatchNorm2d-213 [-1, 128, 4, 4] 256
ReLU-214 [-1, 128, 4, 4] 0
MaxPool2d-215 [-1, 832, 4, 4] 0
Conv2d-216 [-1, 128, 4, 4] 106,624
BatchNorm2d-217 [-1, 128, 4, 4] 256
ReLU-218 [-1, 128, 4, 4] 0
Inception-219 [-1, 1024, 4, 4] 0
AdaptiveAvgPool2d-220 [-1, 1024, 1, 1] 0
Dropout2d-221 [-1, 1024, 1, 1] 0
Linear-222 [-1, 100] 102,500
================================================================
Total params: 6,402,564
Trainable params: 6,402,564
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 27.12
Params size (MB): 24.42
Estimated Total Size (MB): 51.56
----------------------------------------------------------------
Lightning モジュール
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau from torch.optim.swa_utils import AveragedModel, update_bn import torchvision import pytorch_lightning as pl from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping from pytorch_lightning.metrics.functional import accuracy #from pl_bolts.datamodules import CIFAR10DataModule #from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
batch_size = 50
train_transforms = torchvision.transforms.Compose([
torchvision.transforms.RandomCrop(32, padding=4),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
cifar100_normalization(),
])
test_transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
cifar100_normalization(),
])
cifar100_dm = CIFAR100DataModule(
batch_size=batch_size,
num_workers=8,
train_transforms=train_transforms,
test_transforms=test_transforms,
val_transforms=test_transforms,
)
class LitCifar100(pl.LightningModule):
def __init__(self, lr=0.05, factor=0.8):
super().__init__()
self.save_hyperparameters()
self.model = googlenet()
def forward(self, x):
out = self.model(x)
return F.log_softmax(out, dim=1)
def training_step(self, batch, batch_idx):
x, y = batch
logits = F.log_softmax(self.model(x), dim=1)
loss = F.nll_loss(logits, y)
self.log('train_loss', loss)
return loss
def evaluate(self, batch, stage=None):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
preds = torch.argmax(logits, dim=1)
acc = accuracy(preds, y)
if stage:
self.log(f'{stage}_loss', loss, prog_bar=True)
self.log(f'{stage}_acc', acc, prog_bar=True)
def validation_step(self, batch, batch_idx):
self.evaluate(batch, 'val')
def test_step(self, batch, batch_idx):
self.evaluate(batch, 'test')
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
return {
'optimizer': optimizer,
'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=5, factor=self.hparams.factor, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5),
'monitor': 'val_acc'
}
訓練 / 評価
%%time
model = LitCifar100(lr=0.05, factor=0.5)
model.datamodule = cifar100_dm
trainer = pl.Trainer(
gpus=1,
max_epochs=100,
progress_bar_refresh_rate=100,
logger=pl.loggers.TensorBoardLogger('tblogs/', name='googlenet'),
callbacks=[LearningRateMonitor(logging_interval='step')],
)
trainer.fit(model, cifar100_dm)
trainer.test(model, datamodule=cifar100_dm);
| Name | Type | Params
| Name | Type | Params
------------------------------------
0 | model | GoogleNet | 6.4 M
------------------------------------
6.4 M Trainable params
0 Non-trainable params
6.4 M Total params
25.610 Total estimated model params size (MB)
(...)
Epoch 27: reducing learning rate of group 0 to 2.5000e-02.
Epoch 34: reducing learning rate of group 0 to 1.2500e-02.
Epoch 41: reducing learning rate of group 0 to 6.2500e-03.
Epoch 49: reducing learning rate of group 0 to 3.1250e-03.
Epoch 58: reducing learning rate of group 0 to 1.5625e-03.
Epoch 77: reducing learning rate of group 0 to 7.8125e-04.
Epoch 98: reducing learning rate of group 0 to 3.9063e-04.
(...)
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.7184000015258789, 'test_loss': 1.179699182510376}
--------------------------------------------------------------------------------
CPU times: user 1h 52min 54s, sys: 26min 55s, total: 2h 19min 50s
Wall time: 2h 23min 33s
以上