PyTorch Lightning 1.1: research : CIFAR100 (ResNet with Stochastic Depth)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/25/2021 (1.1.x)
* 本ページは以下の CIFAR10 用リソースを参考に CIFAR100 で遂行した実験結果のレポートです:
- notebooks : PyTorch Lightning CIFAR10 ~94% Baseline Tutorial
- Train CIFAR10 with PyTorch
- Pytorch-cifar100
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
★ 無料セミナー実施中 ★ クラスキャット主催 人工知能 & ビジネス Web セミナー
人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
- Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :
人工知能研究開発支援 | 人工知能研修サービス | テレワーク & オンライン授業を支援 |
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。) |
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション |
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/ |
Facebook: https://www.facebook.com/ClassCatJP/ |
research: CIFAR100 (ResNet with Stochastic Depth)
仕様
- Total params: (11.2M)
- Trainable params:
- Non-trainable params: 0
結果
- stochastic_depth_resnet18
- {‘test_acc’: 0.7181000113487244, ‘test_loss’: 1.0404026508331299}
- 100 エポック ; Wall time: 1h 30min 58s
- Tesla T4
- ReduceLROnPlateau
CIFAR 100 DM
from typing import Any, Callable, Optional, Sequence, Union from pl_bolts.datamodules.vision_datamodule import VisionDataModule #from pl_bolts.datasets import TrialCIFAR10 #from pl_bolts.transforms.dataset_normalizations import cifar10_normalization from pl_bolts.utils import _TORCHVISION_AVAILABLE from pl_bolts.utils.warnings import warn_missing_pkg if _TORCHVISION_AVAILABLE: from torchvision import transforms #from torchvision import transforms as transform_lib from torchvision.datasets import CIFAR100 else: # pragma: no cover warn_missing_pkg('torchvision') CIFAR100 = None
def cifar100_normalization(): if not _TORCHVISION_AVAILABLE: # pragma: no cover raise ModuleNotFoundError( 'You want to use `torchvision` which is not installed yet, install it with `pip install torchvision`.' ) normalize = transforms.Normalize( mean=[x / 255.0 for x in [129.3, 124.1, 112.4]], std=[x / 255.0 for x in [68.2, 65.4, 70.4]], # cifar10 #mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], #std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ) return normalize
class CIFAR100DataModule(VisionDataModule): """ .. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/ Plot-of-a-Subset-of-Images-from-the-CIFAR-10-Dataset.png :width: 400 :alt: CIFAR-10 Specs: - 10 classes (1 per class) - Each image is (3 x 32 x 32) Standard CIFAR10, train, val, test splits and transforms Transforms:: mnist_transforms = transform_lib.Compose([ transform_lib.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]] ) ]) Example:: from pl_bolts.datamodules import CIFAR10DataModule dm = CIFAR10DataModule(PATH) model = LitModel() Trainer().fit(model, datamodule=dm) Or you can set your own transforms Example:: dm.train_transforms = ... dm.test_transforms = ... dm.val_transforms = ... """ name = "cifar100" dataset_cls = CIFAR100 dims = (3, 32, 32) def __init__( self, data_dir: Optional[str] = None, val_split: Union[int, float] = 0.2, num_workers: int = 16, normalize: bool = False, batch_size: int = 32, seed: int = 42, shuffle: bool = False, pin_memory: bool = False, drop_last: bool = False, *args: Any, **kwargs: Any, ) -> None: """ Args: data_dir: Where to save/load the data val_split: Percent (float) or number (int) of samples to use for the validation split num_workers: How many workers to use for loading data normalize: If true applies image normalize batch_size: How many samples per batch to load seed: Random seed to be used for train/val/test splits shuffle: If true shuffles the train data every epoch pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before returning them drop_last: If true drops the last incomplete batch """ super().__init__( # type: ignore[misc] data_dir=data_dir, val_split=val_split, num_workers=num_workers, normalize=normalize, batch_size=batch_size, seed=seed, shuffle=shuffle, pin_memory=pin_memory, drop_last=drop_last, *args, **kwargs, ) @property def num_samples(self) -> int: train_len, _ = self._get_splits(len_dataset=50_000) return train_len @property def num_classes(self) -> int: """ Return: 10 """ return 100 def default_transforms(self) -> Callable: if self.normalize: cf100_transforms = transforms.Compose([transform_lib.ToTensor(), cifar100_normalization()]) else: cf100_transforms = transforms.Compose([transform_lib.ToTensor()]) return cf100_transforms
モデル
import torch import torch.nn as nn from torch.distributions.bernoulli import Bernoulli import random
class StochasticDepthBasicBlock(torch.jit.ScriptModule): expansion=1 def __init__(self, p, in_channels, out_channels, stride=1): super().__init__() #self.p = torch.tensor(p).float() self.p = p self.residual = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels * StochasticDepthBasicBlock.expansion, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels) ) self.shortcut = nn.Sequential() if stride != 1 or in_channels != out_channels * StochasticDepthBasicBlock.expansion: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels * StochasticDepthBasicBlock.expansion, kernel_size=1, stride=stride), nn.BatchNorm2d(out_channels) ) def survival(self): var = torch.bernoulli(torch.tensor(self.p).float()) return torch.equal(var, torch.tensor(1).float().to(var.device)) @torch.jit.script_method def forward(self, x): if self.training: if self.survival(): # official torch implementation # function ResidualDrop:updateOutput(input) # local skip_forward = self.skip:forward(input) # self.output:resizeAs(skip_forward):copy(skip_forward) # if self.train then # if self.gate then -- only compute convolutional output when gate is open # self.output:add(self.net:forward(input)) # end # else # self.output:add(self.net:forward(input):mul(1-self.deathRate)) # end # return self.output # end # paper: # Hl = ReLU(bl*fl(Hl−1) + id(Hl−1)). # paper and their official implementation are different # paper use relu after output # official implementation dosen't # # other implementions which use relu: # https://github.com/jiweeo/pytorch-stochastic-depth/blob/a6f95aaffee82d273c1cd73d9ed6ef0718c6683d/models/resnet.py # https://github.com/dblN/stochastic_depth_keras/blob/master/train.py # implementations which doesn't use relu: # https://github.com/transcranial/stochastic-depth/blob/master/stochastic-depth.ipynb # https://github.com/shamangary/Pytorch-Stochastic-Depth-Resnet/blob/master/TYY_stodepth_lineardecay.py # I will just stick with the official implementation, I think # whether add relu after residual won't effect the network # performance too much x = self.residual(x) + self.shortcut(x) else: # If bl = 0, the ResBlock reduces to the identity function x = self.shortcut(x) else: x = self.residual(x) * self.p + self.shortcut(x) return x class StochasticDepthBottleNeck(torch.jit.ScriptModule): """Residual block for resnet over 50 layers """ expansion = 4 def __init__(self, p, in_channels, out_channels, stride=1): super().__init__() self.p = p self.residual = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels * StochasticDepthBottleNeck.expansion, kernel_size=1, bias=False), nn.BatchNorm2d(out_channels * StochasticDepthBottleNeck.expansion), ) self.shortcut = nn.Sequential() if stride != 1 or in_channels != out_channels * StochasticDepthBottleNeck.expansion: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels * StochasticDepthBottleNeck.expansion, stride=stride, kernel_size=1, bias=False), nn.BatchNorm2d(out_channels * StochasticDepthBottleNeck.expansion) ) def survival(self): var = torch.bernoulli(torch.tensor(self.p).float()) return torch.equal(var, torch.tensor(1).float().to(var.device)) @torch.jit.script_method def forward(self, x): if self.training: if self.survival(): x = self.residual(x) + self.shortcut(x) else: x = self.shortcut(x) else: x = self.residual(x) * self.p + self.shortcut(x) return x class StochasticDepthResNet(nn.Module): def __init__(self, block, num_block, num_classes=100): super().__init__() self.in_channels = 64 self.conv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True) ) self.step = (1 - 0.5) / (sum(num_block) - 1) self.pl = 1 self.conv2_x = self._make_layer(block, 64, num_block[0], 1) self.conv3_x = self._make_layer(block, 128, num_block[1], 2) self.conv4_x = self._make_layer(block, 256, num_block[2], 2) self.conv5_x = self._make_layer(block, 512, num_block[3], 2) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, out_channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.pl, self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion self.pl -= self.step return nn.Sequential(*layers) def forward(self, x): output = self.conv1(x) output = self.conv2_x(output) output = self.conv3_x(output) output = self.conv4_x(output) output = self.conv5_x(output) output = self.avg_pool(output) output = output.view(output.size(0), -1) output = self.fc(output) return output def stochastic_depth_resnet18(): """ return a ResNet 18 object """ return StochasticDepthResNet(StochasticDepthBasicBlock, [2, 2, 2, 2]) def stochastic_depth_resnet34(): """ return a ResNet 34 object """ return StochasticDepthResNet(StochasticDepthBasicBlock, [3, 4, 6, 3]) def stochastic_depth_resnet50(): """ return a ResNet 50 object """ return StochasticDepthResNet(StochasticDepthBottleNeck, [3, 4, 6, 3]) def stochastic_depth_resnet101(): """ return a ResNet 101 object """ return StochasticDepthResNet(StochasticDepthBottleNeck, [3, 4, 23, 3]) def stochastic_depth_resnet152(): """ return a ResNet 152 object """ return StochasticDepthResNet(StochasticDepthBottleNeck, [3, 8, 36, 3])
net = stochastic_depth_resnet18() print(net) y = net(torch.randn(1, 3, 32, 32)) print(y.size())
StochasticDepthResNet( (conv1): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (conv2_x): Sequential( (0): StochasticDepthBasicBlock( (residual): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=BatchNorm2d) (2): RecursiveScriptModule(original_name=ReLU) (3): RecursiveScriptModule(original_name=Conv2d) (4): RecursiveScriptModule(original_name=BatchNorm2d) ) (shortcut): RecursiveScriptModule(original_name=Sequential) ) (1): StochasticDepthBasicBlock( (residual): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=BatchNorm2d) (2): RecursiveScriptModule(original_name=ReLU) (3): RecursiveScriptModule(original_name=Conv2d) (4): RecursiveScriptModule(original_name=BatchNorm2d) ) (shortcut): RecursiveScriptModule(original_name=Sequential) ) ) (conv3_x): Sequential( (0): StochasticDepthBasicBlock( (residual): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=BatchNorm2d) (2): RecursiveScriptModule(original_name=ReLU) (3): RecursiveScriptModule(original_name=Conv2d) (4): RecursiveScriptModule(original_name=BatchNorm2d) ) (shortcut): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=BatchNorm2d) ) ) (1): StochasticDepthBasicBlock( (residual): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=BatchNorm2d) (2): RecursiveScriptModule(original_name=ReLU) (3): RecursiveScriptModule(original_name=Conv2d) (4): RecursiveScriptModule(original_name=BatchNorm2d) ) (shortcut): RecursiveScriptModule(original_name=Sequential) ) ) (conv4_x): Sequential( (0): StochasticDepthBasicBlock( (residual): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=BatchNorm2d) (2): RecursiveScriptModule(original_name=ReLU) (3): RecursiveScriptModule(original_name=Conv2d) (4): RecursiveScriptModule(original_name=BatchNorm2d) ) (shortcut): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=BatchNorm2d) ) ) (1): StochasticDepthBasicBlock( (residual): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=BatchNorm2d) (2): RecursiveScriptModule(original_name=ReLU) (3): RecursiveScriptModule(original_name=Conv2d) (4): RecursiveScriptModule(original_name=BatchNorm2d) ) (shortcut): RecursiveScriptModule(original_name=Sequential) ) ) (conv5_x): Sequential( (0): StochasticDepthBasicBlock( (residual): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=BatchNorm2d) (2): RecursiveScriptModule(original_name=ReLU) (3): RecursiveScriptModule(original_name=Conv2d) (4): RecursiveScriptModule(original_name=BatchNorm2d) ) (shortcut): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=BatchNorm2d) ) ) (1): StochasticDepthBasicBlock( (residual): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=BatchNorm2d) (2): RecursiveScriptModule(original_name=ReLU) (3): RecursiveScriptModule(original_name=Conv2d) (4): RecursiveScriptModule(original_name=BatchNorm2d) ) (shortcut): RecursiveScriptModule(original_name=Sequential) ) ) (avg_pool): AdaptiveAvgPool2d(output_size=(1, 1)) (fc): Linear(in_features=512, out_features=100, bias=True) ) torch.Size([1, 100])
from torchsummary import summary summary(stochastic_depth_resnet18().to('cuda'), (3, 32, 32))
RuntimeError: register_forward_hook is not supported on ScriptModules
Lightning モジュール
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau from torch.optim.swa_utils import AveragedModel, update_bn import torchvision import pytorch_lightning as pl from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping from pytorch_lightning.metrics.functional import accuracy #from pl_bolts.datamodules import CIFAR10DataModule #from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
batch_size = 50 train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomCrop(32, padding=4), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), cifar100_normalization(), ]) test_transforms = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), cifar100_normalization(), ]) cifar100_dm = CIFAR100DataModule( batch_size=batch_size, num_workers=8, train_transforms=train_transforms, test_transforms=test_transforms, val_transforms=test_transforms, )
class LitCifar100(pl.LightningModule): def __init__(self, lr=0.05, factor=0.8): super().__init__() self.save_hyperparameters() self.model = stochastic_depth_resnet18() def forward(self, x): out = self.model(x) return F.log_softmax(out, dim=1) def training_step(self, batch, batch_idx): x, y = batch logits = F.log_softmax(self.model(x), dim=1) loss = F.nll_loss(logits, y) self.log('train_loss', loss) return loss def evaluate(self, batch, stage=None): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) if stage: self.log(f'{stage}_loss', loss, prog_bar=True) self.log(f'{stage}_acc', acc, prog_bar=True) def validation_step(self, batch, batch_idx): self.evaluate(batch, 'val') def test_step(self, batch, batch_idx): self.evaluate(batch, 'test') def configure_optimizers(self): optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4) return { 'optimizer': optimizer, 'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=5, factor=self.hparams.factor, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5), 'monitor': 'val_acc' }
訓練 / 評価
%%time model = LitCifar100(lr=0.05, factor=0.5) model.datamodule = cifar100_dm trainer = pl.Trainer( gpus=1, max_epochs=100, progress_bar_refresh_rate=100, logger=pl.loggers.TensorBoardLogger('tblogs/', name='stochastic_depth_resnet18'), callbacks=[LearningRateMonitor(logging_interval='step')], ) trainer.fit(model, cifar100_dm) trainer.test(model, datamodule=cifar100_dm);
| Name | Type | Params ------------------------------------------------ 0 | model | StochasticDepthResNet | 11.2 M ------------------------------------------------ 11.2 M Trainable params 0 Non-trainable params 11.2 M Total params (...) Epoch 34: reducing learning rate of group 0 to 2.5000e-02. Epoch 43: reducing learning rate of group 0 to 1.2500e-02. Epoch 51: reducing learning rate of group 0 to 6.2500e-03. Epoch 61: reducing learning rate of group 0 to 3.1250e-03. Epoch 77: reducing learning rate of group 0 to 1.5625e-03. Epoch 85: reducing learning rate of group 0 to 7.8125e-04. Epoch 97: reducing learning rate of group 0 to 3.9063e-04. (...) -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.7181000113487244, 'test_loss': 1.0404026508331299} -------------------------------------------------------------------------------- CPU times: user 1h 2min 17s, sys: 25min 52s, total: 1h 28min 9s Wall time: 1h 30min 58s
以上