PyTorch Lightning 1.1 : research: CIFAR100 (RegNet)

PyTorch Lightning 1.1: research : CIFAR100 (RegNet)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/25/2021 (1.1.x)

* 本ページは以下の CIFAR10 用リソースを参考に CIFAR100 で遂行した実験結果のレポートです:

* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

無料セミナー実施中 クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
  • Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :

人工知能研究開発支援 人工知能研修サービス テレワーク & オンライン授業を支援
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。)

お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/

 

research: CIFAR100 (RegNet)

RegNetX_200MF

仕様

  • Total params: 2,355,156 (2.4M)
  • Trainable params: 2,355,156
  • Non-trainable params: 0

 
結果

  • RegNetX_200MF
  • {‘test_acc’: 0.7339000105857849, ‘test_loss’: 1.152081847190857}
  • 100 エポック ; Wall time: 2h 8min 30s
  • Tesla T4
  • ReduceLROnPlateau

 

RegNetX_400MF

仕様

  • Total params: 4,813,988 (4.8M)
  • Trainable params: 4,813,988
  • Non-trainable params: 0

 
結果

  • RegNetX_400MF
  • {‘test_acc’: 0.732200026512146, ‘test_loss’: 1.1259433031082153}
  • 100 エポック ; Wall time: Wall time: 3h 19min 18s
  • Tesla T4
  • ReduceLROnPlateau

 

RegNetY_400MF

仕様

  • Total params: 5,749,012 (5.7M)
  • Trainable params: 5,749,012
  • Non-trainable params: 0

 
結果

  • RegNetY_400MF
  • {‘test_acc’: 0.7128999829292297, ‘test_loss’: 1.2059353590011597}
  • 100 エポック ; Wall time: Wall time: 3h 47min 37s
  • Tesla T4
  • ReduceLROnPlateau

 

CIFAR 100 DM

from typing import Any, Callable, Optional, Sequence, Union
 
from pl_bolts.datamodules.vision_datamodule import VisionDataModule
#from pl_bolts.datasets import TrialCIFAR10
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pl_bolts.utils import _TORCHVISION_AVAILABLE
from pl_bolts.utils.warnings import warn_missing_pkg
 
if _TORCHVISION_AVAILABLE:
    from torchvision import transforms
    #from torchvision import transforms as transform_lib
    from torchvision.datasets import CIFAR100
else:  # pragma: no cover
    warn_missing_pkg('torchvision')
    CIFAR100 = None
def cifar100_normalization():
    if not _TORCHVISION_AVAILABLE:  # pragma: no cover
        raise ModuleNotFoundError(
            'You want to use `torchvision` which is not installed yet, install it with `pip install torchvision`.'
        )

    normalize = transforms.Normalize(
        mean=[x / 255.0 for x in [129.3, 124.1, 112.4]],
        std=[x / 255.0 for x in [68.2, 65.4, 70.4]],
        # cifar10
        #mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
        #std=[x / 255.0 for x in [63.0, 62.1, 66.7]],
    )
    return normalize
class CIFAR100DataModule(VisionDataModule):
    """
    .. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/
        Plot-of-a-Subset-of-Images-from-the-CIFAR-10-Dataset.png
        :width: 400
        :alt: CIFAR-10
    Specs:
        - 10 classes (1 per class)
        - Each image is (3 x 32 x 32)
    Standard CIFAR10, train, val, test splits and transforms
    Transforms::
        mnist_transforms = transform_lib.Compose([
            transform_lib.ToTensor(),
            transforms.Normalize(
                mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
                std=[x / 255.0 for x in [63.0, 62.1, 66.7]]
            )
        ])
    Example::
        from pl_bolts.datamodules import CIFAR10DataModule
        dm = CIFAR10DataModule(PATH)
        model = LitModel()
        Trainer().fit(model, datamodule=dm)
    Or you can set your own transforms
    Example::
        dm.train_transforms = ...
        dm.test_transforms = ...
        dm.val_transforms  = ...
    """
    name = "cifar100"
    dataset_cls = CIFAR100
    dims = (3, 32, 32)

    def __init__(
        self,
        data_dir: Optional[str] = None,
        val_split: Union[int, float] = 0.2,
        num_workers: int = 16,
        normalize: bool = False,
        batch_size: int = 32,
        seed: int = 42,
        shuffle: bool = False,
        pin_memory: bool = False,
        drop_last: bool = False,
        *args: Any,
        **kwargs: Any,
    ) -> None:
        """
        Args:
            data_dir: Where to save/load the data
            val_split: Percent (float) or number (int) of samples to use for the validation split
            num_workers: How many workers to use for loading data
            normalize: If true applies image normalize
            batch_size: How many samples per batch to load
            seed: Random seed to be used for train/val/test splits
            shuffle: If true shuffles the train data every epoch
            pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before
                        returning them
            drop_last: If true drops the last incomplete batch
        """
        super().__init__(  # type: ignore[misc]
            data_dir=data_dir,
            val_split=val_split,
            num_workers=num_workers,
            normalize=normalize,
            batch_size=batch_size,
            seed=seed,
            shuffle=shuffle,
            pin_memory=pin_memory,
            drop_last=drop_last,
            *args,
            **kwargs,
        )

    @property
    def num_samples(self) -> int:
        train_len, _ = self._get_splits(len_dataset=50_000)
        return train_len

    @property
    def num_classes(self) -> int:
        """
        Return:
            10
        """
        return 100

    def default_transforms(self) -> Callable:
        if self.normalize:
            cf100_transforms = transforms.Compose([transform_lib.ToTensor(), cifar100_normalization()])
        else:
            cf100_transforms = transforms.Compose([transform_lib.ToTensor()])

        return cf100_transforms

 

モデル

import torch
import torch.nn as nn
import torch.nn.functional as F
class SE(nn.Module):
    '''Squeeze-and-Excitation block.'''

    def __init__(self, in_planes, se_planes):
        super(SE, self).__init__()
        self.se1 = nn.Conv2d(in_planes, se_planes, kernel_size=1, bias=True)
        self.se2 = nn.Conv2d(se_planes, in_planes, kernel_size=1, bias=True)

    def forward(self, x):
        out = F.adaptive_avg_pool2d(x, (1, 1))
        out = F.relu(self.se1(out))
        out = self.se2(out).sigmoid()
        out = x * out
        return out


class Block(nn.Module):
    def __init__(self, w_in, w_out, stride, group_width, bottleneck_ratio, se_ratio):
        super(Block, self).__init__()
        # 1x1
        w_b = int(round(w_out * bottleneck_ratio))
        self.conv1 = nn.Conv2d(w_in, w_b, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(w_b)
        # 3x3
        num_groups = w_b // group_width
        self.conv2 = nn.Conv2d(w_b, w_b, kernel_size=3,
                               stride=stride, padding=1, groups=num_groups, bias=False)
        self.bn2 = nn.BatchNorm2d(w_b)
        # se
        self.with_se = se_ratio > 0
        if self.with_se:
            w_se = int(round(w_in * se_ratio))
            self.se = SE(w_b, w_se)
        # 1x1
        self.conv3 = nn.Conv2d(w_b, w_out, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(w_out)

        self.shortcut = nn.Sequential()
        if stride != 1 or w_in != w_out:
            self.shortcut = nn.Sequential(
                nn.Conv2d(w_in, w_out,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(w_out)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        if self.with_se:
            out = self.se(out)
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class RegNet(nn.Module):
    def __init__(self, cfg, num_classes=100):
        super(RegNet, self).__init__()
        self.cfg = cfg
        self.in_planes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(0)
        self.layer2 = self._make_layer(1)
        self.layer3 = self._make_layer(2)
        self.layer4 = self._make_layer(3)
        self.linear = nn.Linear(self.cfg['widths'][-1], num_classes)

    def _make_layer(self, idx):
        depth = self.cfg['depths'][idx]
        width = self.cfg['widths'][idx]
        stride = self.cfg['strides'][idx]
        group_width = self.cfg['group_width']
        bottleneck_ratio = self.cfg['bottleneck_ratio']
        se_ratio = self.cfg['se_ratio']

        layers = []
        for i in range(depth):
            s = stride if i == 0 else 1
            layers.append(Block(self.in_planes, width,
                                s, group_width, bottleneck_ratio, se_ratio))
            self.in_planes = width
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.adaptive_avg_pool2d(out, (1, 1))
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


def RegNetX_200MF():
    cfg = {
        'depths': [1, 1, 4, 7],
        'widths': [24, 56, 152, 368],
        'strides': [1, 1, 2, 2],
        'group_width': 8,
        'bottleneck_ratio': 1,
        'se_ratio': 0,
    }
    return RegNet(cfg)


def RegNetX_400MF():
    cfg = {
        'depths': [1, 2, 7, 12],
        'widths': [32, 64, 160, 384],
        'strides': [1, 1, 2, 2],
        'group_width': 16,
        'bottleneck_ratio': 1,
        'se_ratio': 0,
    }
    return RegNet(cfg)


def RegNetY_400MF():
    cfg = {
        'depths': [1, 2, 7, 12],
        'widths': [32, 64, 160, 384],
        'strides': [1, 1, 2, 2],
        'group_width': 16,
        'bottleneck_ratio': 1,
        'se_ratio': 0.25,
    }
    return RegNet(cfg)
net = RegNetX_200MF()
print(net)
y = net(torch.randn(1, 3, 32, 32))
print(y.size())
RegNet(
  (conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer1): Sequential(
    (0): Block(
      (conv1): Conv2d(64, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=3, bias=False)
      (bn2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(64, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
  )
  (layer2): Sequential(
    (0): Block(
      (conv1): Conv2d(24, 56, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(56, 56, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=7, bias=False)
      (bn2): BatchNorm2d(56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(56, 56, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(24, 56, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
  )
  (layer3): Sequential(
    (0): Block(
      (conv1): Conv2d(56, 152, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(152, 152, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=19, bias=False)
      (bn2): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(152, 152, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(56, 152, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Block(
      (conv1): Conv2d(152, 152, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(152, 152, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=19, bias=False)
      (bn2): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(152, 152, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): Block(
      (conv1): Conv2d(152, 152, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(152, 152, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=19, bias=False)
      (bn2): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(152, 152, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (3): Block(
      (conv1): Conv2d(152, 152, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(152, 152, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=19, bias=False)
      (bn2): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(152, 152, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (layer4): Sequential(
    (0): Block(
      (conv1): Conv2d(152, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(368, 368, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=46, bias=False)
      (bn2): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(152, 368, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Block(
      (conv1): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(368, 368, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=46, bias=False)
      (bn2): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): Block(
      (conv1): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(368, 368, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=46, bias=False)
      (bn2): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (3): Block(
      (conv1): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(368, 368, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=46, bias=False)
      (bn2): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (4): Block(
      (conv1): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(368, 368, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=46, bias=False)
      (bn2): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (5): Block(
      (conv1): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(368, 368, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=46, bias=False)
      (bn2): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (6): Block(
      (conv1): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(368, 368, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=46, bias=False)
      (bn2): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(368, 368, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(368, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (linear): Linear(in_features=368, out_features=100, bias=True)
)
torch.Size([1, 100])
from torchsummary import summary
 
summary(RegNetX_200MF().to('cuda'), (3, 32, 32))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 32, 32]           1,728
       BatchNorm2d-2           [-1, 64, 32, 32]             128
            Conv2d-3           [-1, 24, 32, 32]           1,536
       BatchNorm2d-4           [-1, 24, 32, 32]              48
            Conv2d-5           [-1, 24, 32, 32]           1,728
       BatchNorm2d-6           [-1, 24, 32, 32]              48
            Conv2d-7           [-1, 24, 32, 32]             576
       BatchNorm2d-8           [-1, 24, 32, 32]              48
            Conv2d-9           [-1, 24, 32, 32]           1,536
      BatchNorm2d-10           [-1, 24, 32, 32]              48
            Block-11           [-1, 24, 32, 32]               0
           Conv2d-12           [-1, 56, 32, 32]           1,344
      BatchNorm2d-13           [-1, 56, 32, 32]             112
           Conv2d-14           [-1, 56, 32, 32]           4,032
      BatchNorm2d-15           [-1, 56, 32, 32]             112
           Conv2d-16           [-1, 56, 32, 32]           3,136
      BatchNorm2d-17           [-1, 56, 32, 32]             112
           Conv2d-18           [-1, 56, 32, 32]           1,344
      BatchNorm2d-19           [-1, 56, 32, 32]             112
            Block-20           [-1, 56, 32, 32]               0
           Conv2d-21          [-1, 152, 32, 32]           8,512
      BatchNorm2d-22          [-1, 152, 32, 32]             304
           Conv2d-23          [-1, 152, 16, 16]          10,944
      BatchNorm2d-24          [-1, 152, 16, 16]             304
           Conv2d-25          [-1, 152, 16, 16]          23,104
      BatchNorm2d-26          [-1, 152, 16, 16]             304
           Conv2d-27          [-1, 152, 16, 16]           8,512
      BatchNorm2d-28          [-1, 152, 16, 16]             304
            Block-29          [-1, 152, 16, 16]               0
           Conv2d-30          [-1, 152, 16, 16]          23,104
      BatchNorm2d-31          [-1, 152, 16, 16]             304
           Conv2d-32          [-1, 152, 16, 16]          10,944
      BatchNorm2d-33          [-1, 152, 16, 16]             304
           Conv2d-34          [-1, 152, 16, 16]          23,104
      BatchNorm2d-35          [-1, 152, 16, 16]             304
            Block-36          [-1, 152, 16, 16]               0
           Conv2d-37          [-1, 152, 16, 16]          23,104
      BatchNorm2d-38          [-1, 152, 16, 16]             304
           Conv2d-39          [-1, 152, 16, 16]          10,944
      BatchNorm2d-40          [-1, 152, 16, 16]             304
           Conv2d-41          [-1, 152, 16, 16]          23,104
      BatchNorm2d-42          [-1, 152, 16, 16]             304
            Block-43          [-1, 152, 16, 16]               0
           Conv2d-44          [-1, 152, 16, 16]          23,104
      BatchNorm2d-45          [-1, 152, 16, 16]             304
           Conv2d-46          [-1, 152, 16, 16]          10,944
      BatchNorm2d-47          [-1, 152, 16, 16]             304
           Conv2d-48          [-1, 152, 16, 16]          23,104
      BatchNorm2d-49          [-1, 152, 16, 16]             304
            Block-50          [-1, 152, 16, 16]               0
           Conv2d-51          [-1, 368, 16, 16]          55,936
      BatchNorm2d-52          [-1, 368, 16, 16]             736
           Conv2d-53            [-1, 368, 8, 8]          26,496
      BatchNorm2d-54            [-1, 368, 8, 8]             736
           Conv2d-55            [-1, 368, 8, 8]         135,424
      BatchNorm2d-56            [-1, 368, 8, 8]             736
           Conv2d-57            [-1, 368, 8, 8]          55,936
      BatchNorm2d-58            [-1, 368, 8, 8]             736
            Block-59            [-1, 368, 8, 8]               0
           Conv2d-60            [-1, 368, 8, 8]         135,424
      BatchNorm2d-61            [-1, 368, 8, 8]             736
           Conv2d-62            [-1, 368, 8, 8]          26,496
      BatchNorm2d-63            [-1, 368, 8, 8]             736
           Conv2d-64            [-1, 368, 8, 8]         135,424
      BatchNorm2d-65            [-1, 368, 8, 8]             736
            Block-66            [-1, 368, 8, 8]               0
           Conv2d-67            [-1, 368, 8, 8]         135,424
      BatchNorm2d-68            [-1, 368, 8, 8]             736
           Conv2d-69            [-1, 368, 8, 8]          26,496
      BatchNorm2d-70            [-1, 368, 8, 8]             736
           Conv2d-71            [-1, 368, 8, 8]         135,424
      BatchNorm2d-72            [-1, 368, 8, 8]             736
            Block-73            [-1, 368, 8, 8]               0
           Conv2d-74            [-1, 368, 8, 8]         135,424
      BatchNorm2d-75            [-1, 368, 8, 8]             736
           Conv2d-76            [-1, 368, 8, 8]          26,496
      BatchNorm2d-77            [-1, 368, 8, 8]             736
           Conv2d-78            [-1, 368, 8, 8]         135,424
      BatchNorm2d-79            [-1, 368, 8, 8]             736
            Block-80            [-1, 368, 8, 8]               0
           Conv2d-81            [-1, 368, 8, 8]         135,424
      BatchNorm2d-82            [-1, 368, 8, 8]             736
           Conv2d-83            [-1, 368, 8, 8]          26,496
      BatchNorm2d-84            [-1, 368, 8, 8]             736
           Conv2d-85            [-1, 368, 8, 8]         135,424
      BatchNorm2d-86            [-1, 368, 8, 8]             736
            Block-87            [-1, 368, 8, 8]               0
           Conv2d-88            [-1, 368, 8, 8]         135,424
      BatchNorm2d-89            [-1, 368, 8, 8]             736
           Conv2d-90            [-1, 368, 8, 8]          26,496
      BatchNorm2d-91            [-1, 368, 8, 8]             736
           Conv2d-92            [-1, 368, 8, 8]         135,424
      BatchNorm2d-93            [-1, 368, 8, 8]             736
            Block-94            [-1, 368, 8, 8]               0
           Conv2d-95            [-1, 368, 8, 8]         135,424
      BatchNorm2d-96            [-1, 368, 8, 8]             736
           Conv2d-97            [-1, 368, 8, 8]          26,496
      BatchNorm2d-98            [-1, 368, 8, 8]             736
           Conv2d-99            [-1, 368, 8, 8]         135,424
     BatchNorm2d-100            [-1, 368, 8, 8]             736
           Block-101            [-1, 368, 8, 8]               0
          Linear-102                  [-1, 100]          36,900
================================================================
Total params: 2,355,156
Trainable params: 2,355,156
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 27.56
Params size (MB): 8.98
Estimated Total Size (MB): 36.55
----------------------------------------------------------------

 

Lightning モジュール

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau
from torch.optim.swa_utils import AveragedModel, update_bn
import torchvision
 
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping
from pytorch_lightning.metrics.functional import accuracy
#from pl_bolts.datamodules import CIFAR10DataModule
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
batch_size = 50
 
train_transforms = torchvision.transforms.Compose([
    torchvision.transforms.RandomCrop(32, padding=4),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    cifar100_normalization(),
])
 
test_transforms = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    cifar100_normalization(),
])
 
cifar100_dm = CIFAR100DataModule(
    batch_size=batch_size,
    num_workers=8,
    train_transforms=train_transforms,
    test_transforms=test_transforms,
    val_transforms=test_transforms,
)
class LitCifar100(pl.LightningModule):
    def __init__(self, lr=0.05, factor=0.8):
        super().__init__()
  
        self.save_hyperparameters()
        self.model = RegNetX_200MF()
 
    def forward(self, x):
        out = self.model(x)
        return F.log_softmax(out, dim=1)
  
    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = F.log_softmax(self.model(x), dim=1)
        loss = F.nll_loss(logits, y)
        self.log('train_loss', loss)
        return loss
  
    def evaluate(self, batch, stage=None):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y)
  
        if stage:
            self.log(f'{stage}_loss', loss, prog_bar=True)
            self.log(f'{stage}_acc', acc, prog_bar=True)
  
    def validation_step(self, batch, batch_idx):
        self.evaluate(batch, 'val')
  
    def test_step(self, batch, batch_idx):
        self.evaluate(batch, 'test')
  
    def configure_optimizers(self):
        optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
 
        return {
          'optimizer': optimizer,
          'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=5, factor=self.hparams.factor, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5),
          'monitor': 'val_acc'
        }

 

訓練 / 評価

%%time
 
model = LitCifar100(lr=0.05, factor=0.5)
model.datamodule = cifar100_dm
  
trainer = pl.Trainer(
    gpus=1,
    max_epochs=100,
    progress_bar_refresh_rate=100,
    logger=pl.loggers.TensorBoardLogger('tblogs/', name='regnetx_200mf'),
    callbacks=[LearningRateMonitor(logging_interval='step')],
)
  
trainer.fit(model, cifar100_dm)
trainer.test(model, datamodule=cifar100_dm);
  | Name  | Type   | Params
---------------------------------
0 | model | RegNet | 2.4 M 
---------------------------------
2.4 M     Trainable params
0         Non-trainable params
2.4 M     Total params
9.421     Total estimated model params size (MB)
(...)
Epoch    33: reducing learning rate of group 0 to 2.5000e-02.
Epoch    40: reducing learning rate of group 0 to 1.2500e-02.
Epoch    47: reducing learning rate of group 0 to 6.2500e-03.
Epoch    56: reducing learning rate of group 0 to 3.1250e-03.
Epoch    72: reducing learning rate of group 0 to 1.5625e-03.
Epoch    79: reducing learning rate of group 0 to 7.8125e-04.
Epoch    95: reducing learning rate of group 0 to 3.9063e-04.
(...)
-------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.7339000105857849, 'test_loss': 1.152081847190857}
--------------------------------------------------------------------------------
CPU times: user 1h 46min 25s, sys: 18min 45s, total: 2h 5min 10s
Wall time: 2h 8min 30s
 

以上