PyTorch Lightning 1.1: research : CIFAR100 (ResNet with Stochastic Depth)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/25/2021 (1.1.x)
* 本ページは以下の CIFAR10 用リソースを参考に CIFAR100 で遂行した実験結果のレポートです:
- notebooks : PyTorch Lightning CIFAR10 ~94% Baseline Tutorial
- Train CIFAR10 with PyTorch
- Pytorch-cifar100
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
★ 無料セミナー実施中 ★ クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
- Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :
| 人工知能研究開発支援 | 人工知能研修サービス | テレワーク & オンライン授業を支援 |
| PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。) | ||
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
| 株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション |
| E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/ |
| Facebook: https://www.facebook.com/ClassCatJP/ |
research: CIFAR100 (ResNet with Stochastic Depth)
仕様
- Total params: (11.2M)
- Trainable params:
- Non-trainable params: 0
結果
- stochastic_depth_resnet18
- {‘test_acc’: 0.7181000113487244, ‘test_loss’: 1.0404026508331299}
- 100 エポック ; Wall time: 1h 30min 58s
- Tesla T4
- ReduceLROnPlateau
CIFAR 100 DM
from typing import Any, Callable, Optional, Sequence, Union
from pl_bolts.datamodules.vision_datamodule import VisionDataModule
#from pl_bolts.datasets import TrialCIFAR10
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pl_bolts.utils import _TORCHVISION_AVAILABLE
from pl_bolts.utils.warnings import warn_missing_pkg
if _TORCHVISION_AVAILABLE:
from torchvision import transforms
#from torchvision import transforms as transform_lib
from torchvision.datasets import CIFAR100
else: # pragma: no cover
warn_missing_pkg('torchvision')
CIFAR100 = None
def cifar100_normalization():
if not _TORCHVISION_AVAILABLE: # pragma: no cover
raise ModuleNotFoundError(
'You want to use `torchvision` which is not installed yet, install it with `pip install torchvision`.'
)
normalize = transforms.Normalize(
mean=[x / 255.0 for x in [129.3, 124.1, 112.4]],
std=[x / 255.0 for x in [68.2, 65.4, 70.4]],
# cifar10
#mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
#std=[x / 255.0 for x in [63.0, 62.1, 66.7]],
)
return normalize
class CIFAR100DataModule(VisionDataModule):
"""
.. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/
Plot-of-a-Subset-of-Images-from-the-CIFAR-10-Dataset.png
:width: 400
:alt: CIFAR-10
Specs:
- 10 classes (1 per class)
- Each image is (3 x 32 x 32)
Standard CIFAR10, train, val, test splits and transforms
Transforms::
mnist_transforms = transform_lib.Compose([
transform_lib.ToTensor(),
transforms.Normalize(
mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]]
)
])
Example::
from pl_bolts.datamodules import CIFAR10DataModule
dm = CIFAR10DataModule(PATH)
model = LitModel()
Trainer().fit(model, datamodule=dm)
Or you can set your own transforms
Example::
dm.train_transforms = ...
dm.test_transforms = ...
dm.val_transforms = ...
"""
name = "cifar100"
dataset_cls = CIFAR100
dims = (3, 32, 32)
def __init__(
self,
data_dir: Optional[str] = None,
val_split: Union[int, float] = 0.2,
num_workers: int = 16,
normalize: bool = False,
batch_size: int = 32,
seed: int = 42,
shuffle: bool = False,
pin_memory: bool = False,
drop_last: bool = False,
*args: Any,
**kwargs: Any,
) -> None:
"""
Args:
data_dir: Where to save/load the data
val_split: Percent (float) or number (int) of samples to use for the validation split
num_workers: How many workers to use for loading data
normalize: If true applies image normalize
batch_size: How many samples per batch to load
seed: Random seed to be used for train/val/test splits
shuffle: If true shuffles the train data every epoch
pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before
returning them
drop_last: If true drops the last incomplete batch
"""
super().__init__( # type: ignore[misc]
data_dir=data_dir,
val_split=val_split,
num_workers=num_workers,
normalize=normalize,
batch_size=batch_size,
seed=seed,
shuffle=shuffle,
pin_memory=pin_memory,
drop_last=drop_last,
*args,
**kwargs,
)
@property
def num_samples(self) -> int:
train_len, _ = self._get_splits(len_dataset=50_000)
return train_len
@property
def num_classes(self) -> int:
"""
Return:
10
"""
return 100
def default_transforms(self) -> Callable:
if self.normalize:
cf100_transforms = transforms.Compose([transform_lib.ToTensor(), cifar100_normalization()])
else:
cf100_transforms = transforms.Compose([transform_lib.ToTensor()])
return cf100_transforms
モデル
import torch import torch.nn as nn from torch.distributions.bernoulli import Bernoulli import random
class StochasticDepthBasicBlock(torch.jit.ScriptModule):
expansion=1
def __init__(self, p, in_channels, out_channels, stride=1):
super().__init__()
#self.p = torch.tensor(p).float()
self.p = p
self.residual = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels * StochasticDepthBasicBlock.expansion, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels)
)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels * StochasticDepthBasicBlock.expansion:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * StochasticDepthBasicBlock.expansion, kernel_size=1, stride=stride),
nn.BatchNorm2d(out_channels)
)
def survival(self):
var = torch.bernoulli(torch.tensor(self.p).float())
return torch.equal(var, torch.tensor(1).float().to(var.device))
@torch.jit.script_method
def forward(self, x):
if self.training:
if self.survival():
# official torch implementation
# function ResidualDrop:updateOutput(input)
# local skip_forward = self.skip:forward(input)
# self.output:resizeAs(skip_forward):copy(skip_forward)
# if self.train then
# if self.gate then -- only compute convolutional output when gate is open
# self.output:add(self.net:forward(input))
# end
# else
# self.output:add(self.net:forward(input):mul(1-self.deathRate))
# end
# return self.output
# end
# paper:
# Hl = ReLU(bl*fl(Hl−1) + id(Hl−1)).
# paper and their official implementation are different
# paper use relu after output
# official implementation dosen't
#
# other implementions which use relu:
# https://github.com/jiweeo/pytorch-stochastic-depth/blob/a6f95aaffee82d273c1cd73d9ed6ef0718c6683d/models/resnet.py
# https://github.com/dblN/stochastic_depth_keras/blob/master/train.py
# implementations which doesn't use relu:
# https://github.com/transcranial/stochastic-depth/blob/master/stochastic-depth.ipynb
# https://github.com/shamangary/Pytorch-Stochastic-Depth-Resnet/blob/master/TYY_stodepth_lineardecay.py
# I will just stick with the official implementation, I think
# whether add relu after residual won't effect the network
# performance too much
x = self.residual(x) + self.shortcut(x)
else:
# If bl = 0, the ResBlock reduces to the identity function
x = self.shortcut(x)
else:
x = self.residual(x) * self.p + self.shortcut(x)
return x
class StochasticDepthBottleNeck(torch.jit.ScriptModule):
"""Residual block for resnet over 50 layers
"""
expansion = 4
def __init__(self, p, in_channels, out_channels, stride=1):
super().__init__()
self.p = p
self.residual = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels * StochasticDepthBottleNeck.expansion, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels * StochasticDepthBottleNeck.expansion),
)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels * StochasticDepthBottleNeck.expansion:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * StochasticDepthBottleNeck.expansion, stride=stride, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels * StochasticDepthBottleNeck.expansion)
)
def survival(self):
var = torch.bernoulli(torch.tensor(self.p).float())
return torch.equal(var, torch.tensor(1).float().to(var.device))
@torch.jit.script_method
def forward(self, x):
if self.training:
if self.survival():
x = self.residual(x) + self.shortcut(x)
else:
x = self.shortcut(x)
else:
x = self.residual(x) * self.p + self.shortcut(x)
return x
class StochasticDepthResNet(nn.Module):
def __init__(self, block, num_block, num_classes=100):
super().__init__()
self.in_channels = 64
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.step = (1 - 0.5) / (sum(num_block) - 1)
self.pl = 1
self.conv2_x = self._make_layer(block, 64, num_block[0], 1)
self.conv3_x = self._make_layer(block, 128, num_block[1], 2)
self.conv4_x = self._make_layer(block, 256, num_block[2], 2)
self.conv5_x = self._make_layer(block, 512, num_block[3], 2)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, out_channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.pl, self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
self.pl -= self.step
return nn.Sequential(*layers)
def forward(self, x):
output = self.conv1(x)
output = self.conv2_x(output)
output = self.conv3_x(output)
output = self.conv4_x(output)
output = self.conv5_x(output)
output = self.avg_pool(output)
output = output.view(output.size(0), -1)
output = self.fc(output)
return output
def stochastic_depth_resnet18():
""" return a ResNet 18 object
"""
return StochasticDepthResNet(StochasticDepthBasicBlock, [2, 2, 2, 2])
def stochastic_depth_resnet34():
""" return a ResNet 34 object
"""
return StochasticDepthResNet(StochasticDepthBasicBlock, [3, 4, 6, 3])
def stochastic_depth_resnet50():
""" return a ResNet 50 object
"""
return StochasticDepthResNet(StochasticDepthBottleNeck, [3, 4, 6, 3])
def stochastic_depth_resnet101():
""" return a ResNet 101 object
"""
return StochasticDepthResNet(StochasticDepthBottleNeck, [3, 4, 23, 3])
def stochastic_depth_resnet152():
""" return a ResNet 152 object
"""
return StochasticDepthResNet(StochasticDepthBottleNeck, [3, 8, 36, 3])
net = stochastic_depth_resnet18() print(net) y = net(torch.randn(1, 3, 32, 32)) print(y.size())
StochasticDepthResNet(
(conv1): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(conv2_x): Sequential(
(0): StochasticDepthBasicBlock(
(residual): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=BatchNorm2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=Conv2d)
(4): RecursiveScriptModule(original_name=BatchNorm2d)
)
(shortcut): RecursiveScriptModule(original_name=Sequential)
)
(1): StochasticDepthBasicBlock(
(residual): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=BatchNorm2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=Conv2d)
(4): RecursiveScriptModule(original_name=BatchNorm2d)
)
(shortcut): RecursiveScriptModule(original_name=Sequential)
)
)
(conv3_x): Sequential(
(0): StochasticDepthBasicBlock(
(residual): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=BatchNorm2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=Conv2d)
(4): RecursiveScriptModule(original_name=BatchNorm2d)
)
(shortcut): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=BatchNorm2d)
)
)
(1): StochasticDepthBasicBlock(
(residual): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=BatchNorm2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=Conv2d)
(4): RecursiveScriptModule(original_name=BatchNorm2d)
)
(shortcut): RecursiveScriptModule(original_name=Sequential)
)
)
(conv4_x): Sequential(
(0): StochasticDepthBasicBlock(
(residual): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=BatchNorm2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=Conv2d)
(4): RecursiveScriptModule(original_name=BatchNorm2d)
)
(shortcut): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=BatchNorm2d)
)
)
(1): StochasticDepthBasicBlock(
(residual): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=BatchNorm2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=Conv2d)
(4): RecursiveScriptModule(original_name=BatchNorm2d)
)
(shortcut): RecursiveScriptModule(original_name=Sequential)
)
)
(conv5_x): Sequential(
(0): StochasticDepthBasicBlock(
(residual): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=BatchNorm2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=Conv2d)
(4): RecursiveScriptModule(original_name=BatchNorm2d)
)
(shortcut): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=BatchNorm2d)
)
)
(1): StochasticDepthBasicBlock(
(residual): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=BatchNorm2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=Conv2d)
(4): RecursiveScriptModule(original_name=BatchNorm2d)
)
(shortcut): RecursiveScriptModule(original_name=Sequential)
)
)
(avg_pool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=512, out_features=100, bias=True)
)
torch.Size([1, 100])
from torchsummary import summary
summary(stochastic_depth_resnet18().to('cuda'), (3, 32, 32))
RuntimeError: register_forward_hook is not supported on ScriptModules
Lightning モジュール
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau from torch.optim.swa_utils import AveragedModel, update_bn import torchvision import pytorch_lightning as pl from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping from pytorch_lightning.metrics.functional import accuracy #from pl_bolts.datamodules import CIFAR10DataModule #from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
batch_size = 50
train_transforms = torchvision.transforms.Compose([
torchvision.transforms.RandomCrop(32, padding=4),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
cifar100_normalization(),
])
test_transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
cifar100_normalization(),
])
cifar100_dm = CIFAR100DataModule(
batch_size=batch_size,
num_workers=8,
train_transforms=train_transforms,
test_transforms=test_transforms,
val_transforms=test_transforms,
)
class LitCifar100(pl.LightningModule):
def __init__(self, lr=0.05, factor=0.8):
super().__init__()
self.save_hyperparameters()
self.model = stochastic_depth_resnet18()
def forward(self, x):
out = self.model(x)
return F.log_softmax(out, dim=1)
def training_step(self, batch, batch_idx):
x, y = batch
logits = F.log_softmax(self.model(x), dim=1)
loss = F.nll_loss(logits, y)
self.log('train_loss', loss)
return loss
def evaluate(self, batch, stage=None):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
preds = torch.argmax(logits, dim=1)
acc = accuracy(preds, y)
if stage:
self.log(f'{stage}_loss', loss, prog_bar=True)
self.log(f'{stage}_acc', acc, prog_bar=True)
def validation_step(self, batch, batch_idx):
self.evaluate(batch, 'val')
def test_step(self, batch, batch_idx):
self.evaluate(batch, 'test')
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
return {
'optimizer': optimizer,
'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=5, factor=self.hparams.factor, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5),
'monitor': 'val_acc'
}
訓練 / 評価
%%time
model = LitCifar100(lr=0.05, factor=0.5)
model.datamodule = cifar100_dm
trainer = pl.Trainer(
gpus=1,
max_epochs=100,
progress_bar_refresh_rate=100,
logger=pl.loggers.TensorBoardLogger('tblogs/', name='stochastic_depth_resnet18'),
callbacks=[LearningRateMonitor(logging_interval='step')],
)
trainer.fit(model, cifar100_dm)
trainer.test(model, datamodule=cifar100_dm);
| Name | Type | Params
------------------------------------------------
0 | model | StochasticDepthResNet | 11.2 M
------------------------------------------------
11.2 M Trainable params
0 Non-trainable params
11.2 M Total params
(...)
Epoch 34: reducing learning rate of group 0 to 2.5000e-02.
Epoch 43: reducing learning rate of group 0 to 1.2500e-02.
Epoch 51: reducing learning rate of group 0 to 6.2500e-03.
Epoch 61: reducing learning rate of group 0 to 3.1250e-03.
Epoch 77: reducing learning rate of group 0 to 1.5625e-03.
Epoch 85: reducing learning rate of group 0 to 7.8125e-04.
Epoch 97: reducing learning rate of group 0 to 3.9063e-04.
(...)
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.7181000113487244, 'test_loss': 1.0404026508331299}
--------------------------------------------------------------------------------
CPU times: user 1h 2min 17s, sys: 25min 52s, total: 1h 28min 9s
Wall time: 1h 30min 58s
以上