PyTorch Lightning 1.1: research : CIFAR10 (VGG11, 13, 16)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/19/2021 (1.1.x)
* 本ページは、以下のリソースを参考にして遂行した実験結果のレポートです:
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
★ 無料セミナー実施中 ★ クラスキャット主催 人工知能 & ビジネス Web セミナー
人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
- Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :
人工知能研究開発支援 | 人工知能研修サービス | テレワーク & オンライン授業を支援 |
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。) |
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション |
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/ |
Facebook: https://www.facebook.com/ClassCatJP/ |
research: CIFAR10 (VGG11, 13, 16)
結果
40 エポック : OneCycleLR
- VGG13 – {‘test_acc’: 0.8841999769210815, ‘test_loss’: 0.35507383942604065} – Wall time: 23min 5s
150 エポック: ReduceLROnPlateau
- VGG11 – {‘test_acc’: 0.9083999991416931, ‘test_loss’: 0.37741217017173767} – Wall time: 1h 6min 2s
- VGG13 – {‘test_acc’: 0.926800012588501, ‘test_loss’: 0.30548807978630066} – Wall time: 1h 23min 4s
- VGG16 – {‘test_acc’: 0.9093999862670898, ‘test_loss’: 0.37196555733680725} – Wall time: 1h 39min 4s
コード
import torch import torch.nn as nn
cfg = { 'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], }
class VGG(nn.Module): def __init__(self, vgg_name): super(VGG, self).__init__() self.features = self._make_layers(cfg[vgg_name]) self.classifier = nn.Linear(512, 10) def forward(self, x): out = self.features(x) out = out.view(out.size(0), -1) out = self.classifier(out) return out def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers)
net = VGG('VGG11') print(net) x = torch.randn(2,3,32,32) y = net(x) print(y.size())
VGG( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (4): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (5): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (8): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (9): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (10): ReLU(inplace=True) (11): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (13): ReLU(inplace=True) (14): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (15): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (16): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (17): ReLU(inplace=True) (18): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (19): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (20): ReLU(inplace=True) (21): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (22): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (23): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (24): ReLU(inplace=True) (25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (26): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (27): ReLU(inplace=True) (28): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (29): AvgPool2d(kernel_size=1, stride=1, padding=0) ) (classifier): Linear(in_features=512, out_features=10, bias=True) ) torch.Size([2, 10])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device
device(type='cuda')
from torchsummary import summary summary(VGG('VGG11').to('cuda'), (3, 32, 32))
---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 64, 32, 32] 1,792 BatchNorm2d-2 [-1, 64, 32, 32] 128 ReLU-3 [-1, 64, 32, 32] 0 MaxPool2d-4 [-1, 64, 16, 16] 0 Conv2d-5 [-1, 128, 16, 16] 73,856 BatchNorm2d-6 [-1, 128, 16, 16] 256 ReLU-7 [-1, 128, 16, 16] 0 MaxPool2d-8 [-1, 128, 8, 8] 0 Conv2d-9 [-1, 256, 8, 8] 295,168 BatchNorm2d-10 [-1, 256, 8, 8] 512 ReLU-11 [-1, 256, 8, 8] 0 Conv2d-12 [-1, 256, 8, 8] 590,080 BatchNorm2d-13 [-1, 256, 8, 8] 512 ReLU-14 [-1, 256, 8, 8] 0 MaxPool2d-15 [-1, 256, 4, 4] 0 Conv2d-16 [-1, 512, 4, 4] 1,180,160 BatchNorm2d-17 [-1, 512, 4, 4] 1,024 ReLU-18 [-1, 512, 4, 4] 0 Conv2d-19 [-1, 512, 4, 4] 2,359,808 BatchNorm2d-20 [-1, 512, 4, 4] 1,024 ReLU-21 [-1, 512, 4, 4] 0 MaxPool2d-22 [-1, 512, 2, 2] 0 Conv2d-23 [-1, 512, 2, 2] 2,359,808 BatchNorm2d-24 [-1, 512, 2, 2] 1,024 ReLU-25 [-1, 512, 2, 2] 0 Conv2d-26 [-1, 512, 2, 2] 2,359,808 BatchNorm2d-27 [-1, 512, 2, 2] 1,024 ReLU-28 [-1, 512, 2, 2] 0 MaxPool2d-29 [-1, 512, 1, 1] 0 AvgPool2d-30 [-1, 512, 1, 1] 0 Linear-31 [-1, 10] 5,130 ================================================================ Total params: 9,231,114 Trainable params: 9,231,114 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.01 Forward/backward pass size (MB): 3.71 Params size (MB): 35.21 Estimated Total Size (MB): 38.94 ----------------------------------------------------------------
OneCycleLR スケジューラ
! pip install pytorch-lightning pytorch-lightning-bolts -qU
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import OneCycleLR from torch.optim.swa_utils import AveragedModel, update_bn import torchvision import pytorch_lightning as pl from pytorch_lightning.callbacks import LearningRateMonitor from pytorch_lightning.metrics.functional import accuracy from pl_bolts.datamodules import CIFAR10DataModule from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
Global seed set to 7
batch_size = 32 train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomCrop(32, padding=4), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), cifar10_normalization(), ]) test_transforms = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), cifar10_normalization(), ]) cifar10_dm = CIFAR10DataModule( batch_size=batch_size, train_transforms=train_transforms, test_transforms=test_transforms, val_transforms=test_transforms, )
class LitCifar10VGG(pl.LightningModule): def __init__(self, model_name='vgg11', lr=0.05): super().__init__() self.save_hyperparameters() self.model = VGG(model_name) def forward(self, x): out = self.model(x) return F.log_softmax(out, dim=1) def training_step(self, batch, batch_idx): x, y = batch logits = F.log_softmax(self.model(x), dim=1) loss = F.nll_loss(logits, y) self.log('train_loss', loss) return loss def evaluate(self, batch, stage=None): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) if stage: self.log(f'{stage}_loss', loss, prog_bar=True) self.log(f'{stage}_acc', acc, prog_bar=True) def validation_step(self, batch, batch_idx): self.evaluate(batch, 'val') def test_step(self, batch, batch_idx): self.evaluate(batch, 'test') def configure_optimizers(self): optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4) steps_per_epoch = 45000 // batch_size scheduler_dict = { 'scheduler': OneCycleLR(optimizer, 0.1, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch), 'interval': 'step', } return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}
%%time model = LitCifar10VGG(model_name='VGG13', lr=0.05) model.datamodule = cifar10_dm trainer = pl.Trainer( gpus=1, max_epochs=40, auto_scale_batch_size=True, auto_lr_find = True, progress_bar_refresh_rate=20, logger=pl.loggers.TensorBoardLogger('lightning_logs/', name='vgg13'), callbacks=[LearningRateMonitor(logging_interval='step')], ) trainer.fit(model, cifar10_dm) trainer.test(model, datamodule=cifar10_dm);
GPU available: True, used: True TPU available: None, using: 0 TPU cores | Name | Type | Params ------------------------------- 0 | model | VGG | 9.4 M ------------------------------- 9.4 M Trainable params 0 Non-trainable params 9.4 M Total params 37.664 Total estimated model params size (MB) ... -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.8841999769210815, 'test_loss': 0.35507383942604065} -------------------------------------------------------------------------------- CPU times: user 17min 9s, sys: 2min 47s, total: 19min 57s Wall time: 23min 5s
# Start tensorboard. %reload_ext tensorboard %tensorboard --logdir lightning_logs/
ReduceLROnPlateau スケジューラ
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau from torch.optim.swa_utils import AveragedModel, update_bn import torchvision import pytorch_lightning as pl from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping from pytorch_lightning.metrics.functional import accuracy from pl_bolts.datamodules import CIFAR10DataModule from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
batch_size = 50 train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomCrop(32, padding=4), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), cifar10_normalization(), ]) test_transforms = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), cifar10_normalization(), ]) cifar10_dm = CIFAR10DataModule( batch_size=batch_size, train_transforms=train_transforms, test_transforms=test_transforms, val_transforms=test_transforms, )
class LitCifar10(pl.LightningModule): def __init__(self, model_name='vgg11', lr=0.05): super().__init__() self.save_hyperparameters() self.model = VGG(model_name) def forward(self, x): out = self.model(x) return F.log_softmax(out, dim=1) def training_step(self, batch, batch_idx): x, y = batch logits = F.log_softmax(self.model(x), dim=1) loss = F.nll_loss(logits, y) self.log('train_loss', loss) return loss def evaluate(self, batch, stage=None): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) if stage: self.log(f'{stage}_loss', loss, prog_bar=True) self.log(f'{stage}_acc', acc, prog_bar=True) def validation_step(self, batch, batch_idx): self.evaluate(batch, 'val') def test_step(self, batch, batch_idx): self.evaluate(batch, 'test') def configure_optimizers(self): if False: optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr, weight_decay=0, eps=1e-3) else: optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4) return { 'optimizer': optimizer, 'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=4, factor=0.8, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5), 'monitor': 'val_acc' } def xconfigure_optimizers(self): #print("###") #print(self.hparams) optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4) steps_per_epoch = 45000 // batch_size scheduler_dict = { #'scheduler': ExponentialLR(optimizer, gamma=0.1), #'interval': 'epoch', 'scheduler': OneCycleLR(optimizer, max_lr=0.1, pct_start=0.2, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch), #'scheduler': CyclicLR(optimizer, base_lr=0.001, max_lr=0.1, step_size_up=steps_per_epoch*2, mode="triangular2"), #'scheduler': CyclicLR(optimizer, base_lr=0.001, max_lr=0.1, step_size_up=steps_per_epoch, mode="exp_range", gamma=0.85), #'scheduler': CosineAnnealingLR(optimizer, T_max=200), 'interval': 'step', } return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}
VGG11
%%time model = LitCifar10(model_name='VGG11', lr=0.05) model.datamodule = cifar10_dm trainer = pl.Trainer( gpus=1, max_epochs=150, auto_scale_batch_size=True, auto_lr_find = True, progress_bar_refresh_rate=50, logger=pl.loggers.TensorBoardLogger('tblogs/', name='vgg11'), callbacks=[LearningRateMonitor(logging_interval='step')], ) trainer.fit(model, cifar10_dm) trainer.test(model, datamodule=cifar10_dm);
GPU available: True, used: True TPU available: None, using: 0 TPU cores Files already downloaded and verified Files already downloaded and verified | Name | Type | Params ------------------------------- 0 | model | VGG | 9.2 M ------------------------------- 9.2 M Trainable params 0 Non-trainable params 9.2 M Total params 36.924 Total estimated model params size (MB) (...) Epoch 26: reducing learning rate of group 0 to 4.0000e-02. Epoch 36: reducing learning rate of group 0 to 3.2000e-02. Epoch 45: reducing learning rate of group 0 to 2.5600e-02. Epoch 53: reducing learning rate of group 0 to 2.0480e-02. Epoch 59: reducing learning rate of group 0 to 1.6384e-02. Epoch 65: reducing learning rate of group 0 to 1.3107e-02. Epoch 76: reducing learning rate of group 0 to 1.0486e-02. Epoch 82: reducing learning rate of group 0 to 8.3886e-03. Epoch 89: reducing learning rate of group 0 to 6.7109e-03. Epoch 95: reducing learning rate of group 0 to 5.3687e-03. Epoch 101: reducing learning rate of group 0 to 4.2950e-03. Epoch 110: reducing learning rate of group 0 to 3.4360e-03. Epoch 118: reducing learning rate of group 0 to 2.7488e-03. Epoch 126: reducing learning rate of group 0 to 2.1990e-03. Epoch 134: reducing learning rate of group 0 to 1.7592e-03. Epoch 142: reducing learning rate of group 0 to 1.4074e-03. Epoch 148: reducing learning rate of group 0 to 1.1259e-03. (...) -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.9083999991416931, 'test_loss': 0.37741217017173767} -------------------------------------------------------------------------------- CPU times: user 39min 52s, sys: 11min 7s, total: 51min Wall time: 1h 6min 2s
VGG13
%%time model = LitCifar10(model_name='VGG13', lr=0.05) model.datamodule = cifar10_dm trainer = pl.Trainer( gpus=1, max_epochs=150, auto_scale_batch_size=True, auto_lr_find = True, progress_bar_refresh_rate=50, logger=pl.loggers.TensorBoardLogger('tblogs/', name='vgg13'), callbacks=[LearningRateMonitor(logging_interval='step')], ) trainer.fit(model, cifar10_dm) trainer.test(model, datamodule=cifar10_dm);
GPU available: True, used: True TPU available: None, using: 0 TPU cores | Name | Type | Params ------------------------------- 0 | model | VGG | 9.4 M ------------------------------- 9.4 M Trainable params 0 Non-trainable params 9.4 M Total params 37.664 Total estimated model params size (MB) (...) Epoch 24: reducing learning rate of group 0 to 4.0000e-02. Epoch 35: reducing learning rate of group 0 to 3.2000e-02. Epoch 42: reducing learning rate of group 0 to 2.5600e-02. Epoch 53: reducing learning rate of group 0 to 2.0480e-02. Epoch 61: reducing learning rate of group 0 to 1.6384e-02. Epoch 68: reducing learning rate of group 0 to 1.3107e-02. Epoch 74: reducing learning rate of group 0 to 1.0486e-02. Epoch 80: reducing learning rate of group 0 to 8.3886e-03. Epoch 88: reducing learning rate of group 0 to 6.7109e-03. Epoch 94: reducing learning rate of group 0 to 5.3687e-03. Epoch 103: reducing learning rate of group 0 to 4.2950e-03. Epoch 109: reducing learning rate of group 0 to 3.4360e-03. Epoch 115: reducing learning rate of group 0 to 2.7488e-03. Epoch 126: reducing learning rate of group 0 to 2.1990e-03. Epoch 137: reducing learning rate of group 0 to 1.7592e-03. Epoch 148: reducing learning rate of group 0 to 1.4074e-03. (...) -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.926800012588501, 'test_loss': 0.30548807978630066} -------------------------------------------------------------------------------- CPU times: user 54min 36s, sys: 20min 29s, total: 1h 15min 6s Wall time: 1h 23min 4s
VGG16
%%time model = LitCifar10(model_name='VGG16', lr=0.05) model.datamodule = cifar10_dm trainer = pl.Trainer( gpus=1, max_epochs=150, auto_scale_batch_size=True, auto_lr_find = True, progress_bar_refresh_rate=50, logger=pl.loggers.TensorBoardLogger('tblogs/', name='vgg16'), callbacks=[LearningRateMonitor(logging_interval='step')], ) trainer.fit(model, cifar10_dm) trainer.test(model, datamodule=cifar10_dm);
GPU available: True, used: True TPU available: None, using: 0 TPU cores | Name | Type | Params ------------------------------- 0 | model | VGG | 14.7 M ------------------------------- 14.7 M Trainable params 0 Non-trainable params 14.7 M Total params 58.913 Total estimated model params size (MB) (...) Epoch 24: reducing learning rate of group 0 to 4.0000e-02. Epoch 41: reducing learning rate of group 0 to 3.2000e-02. Epoch 47: reducing learning rate of group 0 to 2.5600e-02. Epoch 64: reducing learning rate of group 0 to 2.0480e-02. Epoch 70: reducing learning rate of group 0 to 1.6384e-02. Epoch 87: reducing learning rate of group 0 to 1.3107e-02. Epoch 93: reducing learning rate of group 0 to 1.0486e-02. Epoch 100: reducing learning rate of group 0 to 8.3886e-03. Epoch 109: reducing learning rate of group 0 to 6.7109e-03. Epoch 120: reducing learning rate of group 0 to 5.3687e-03. Epoch 129: reducing learning rate of group 0 to 4.2950e-03. Epoch 138: reducing learning rate of group 0 to 3.4360e-03. Epoch 150: reducing learning rate of group 0 to 2.7488e-03. (...) -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.9093999862670898, 'test_loss': 0.37196555733680725} -------------------------------------------------------------------------------- CPU times: user 1h 7min 4s, sys: 24min 9s, total: 1h 31min 13s Wall time: 1h 39min 4s
以上