PyTorch 1.8 チュートリアル : PyTorch の学習 : データ並列 (オプション) (翻訳/解説)
翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 06/05/2021 (1.8.1+cu102)
* 本ページは、PyTorch 1.8 Tutorials の以下のページを翻訳した上で適宜、補足説明したものです:
- Parallel and Distributed Training : Optional : Data Parallelism
* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
スケジュールは弊社 公式 Web サイト でご確認頂けます。
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
- ウェビナー運用には弊社製品「ClassCat® Webinar」を利用しています。
人工知能研究開発支援 | 人工知能研修サービス | テレワーク & オンライン授業を支援 |
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。) |
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション |
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/ ; Facebook |
PyTorch の学習 : データ並列 (オプション)
このチュートリアルでは、DataParallel を使用してマルチ GPU をどのように使用するかを学習します。
PyTorch で GPU を使用することは非常に簡単です。モデルを GPU 上に配置できます :
device = torch.device("cuda:0")
model.to(device)
そして、総ての tensor を GPU にコピーできます :
mytensor = my_tensor.to(device)
my_tensor.to(device) の単なる呼び出しは、my_tensor を書き換える代わりに GPU 上の my_tensor の新しいコピーを返すことに注意してください。それを新しい tensor に割り当ててその tensor を GPU 上で使用する必要があります。
貴方の forward, backward 伝播をマルチ GPU 上で実行することは自然です。けれども、PyTorch はデフォルトでは一つの GPU を使用するだけです。DataParallel を使用して貴方のモデルを並列に実行させることによりマルチ GPU 上で演算を簡単に実行できます :
model = nn.DataParallel(model)
それがこのチュートリアルの裏にある核心です。以下でそれをより詳細に探究します。
インポートとパラメータ
PyTorch モジュールをインポートしてパラメータを定義します。
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
# Parameters and DataLoaders
input_size = 5
output_size = 2
batch_size = 30
data_size = 100
Device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
ダミー・データセット
ダミーの (ランダムな) データセットを作成します。getitem を実装する必要があるだけです。
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
batch_size=batch_size, shuffle=True)
単純なモデル
デモのために、モデルは単に入力を取り、線形演算を遂行し、そして出力を与えます。けれども、任意のモデル (CNN, RNN, Capsule Net 等) の上で DataParallel を利用できます。
入力と出力 tensor のサイズをモニタするためにモデルの内側に print ステートメントを配置しました。batch rank 0 で何がプリントされるかに注意を払ってください。
class Model(nn.Module):
# Our model
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
print("\tIn Model: input size", input.size(),
"output size", output.size())
return output
モデルと DataParallel を作成する
これはこのチュートリアルの中心部分です。最初に、モデル・インスタンスを作成して複数の GPU を持つか否かを確認する必要があります。複数の GPU を持つ場合には、nn.DataParallel を使用してモデルをラップすることができます。それから model.to(device) によりモデルを GPU 上に配置することができます。
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(device)
Let's use 2 GPUs!
モデルを実行する
今は入力と出力 tensor のサイズを見ることができます。
for data in rand_loader:
input = data.to(device)
output = model(input)
print("Outside: input size", input.size(),
"output_size", output.size())
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2]) In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2]) Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
結果
GPU を持たないか 1 つの GPU を持つ場合、30 入力と 30 出力をバッチ処理するとき、予想されるようにモデルは 30 を得て 30 を出力します。しかしマルチ GPU を持つ場合には、このような結果を得ることができます。
2 GPUs
(GPU を) 2 つ持つ場合には、以下を見るでしょう :
# on 2 GPUs Let's use 2 GPUs! In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2]) In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2]) Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
3 GPUs
3 GPU を持つ場合には、以下を見るでしょう :
Let's use 3 GPUs! In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2]) In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2]) In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2]) In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2]) In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2]) In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2]) In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2]) Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
8 GPUs
8 個を持つ場合には、以下を見るでしょう :
Let's use 8 GPUs! In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2]) In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2]) Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2]) In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2]) In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2]) In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2]) In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2]) In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2]) Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
要約
DataParallel はデータを自動的に分割して幾つかの GPU 上の複数のモデルにジョブ・オーダーを送ります。各モデルがそれらのジョブを終了した後、DataParallel は (ジョブを) 貴方に返す前に結果を集めてマージします。
更なる情報のためには、以下をチェックアウトしてください :
以上