PyTorch Lightning 1.1 : research: CIFAR100 (SqueezeNet)

PyTorch Lightning 1.1: research : CIFAR100 (SqueezeNet)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/24/2021 (1.1.x)

* 本ページは以下の CIFAR10 用リソースを参考に CIFAR100 で遂行した実験結果のレポートです:

* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

無料セミナー実施中 クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
  • Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :

人工知能研究開発支援 人工知能研修サービス テレワーク & オンライン授業を支援
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。)

お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/

 

research: CIFAR100 (SqueezeNet)

仕様

  • Total params: 781,156 (781 K)
  • Trainable params: 781,156
  • Non-trainable params: 0

 

結果

100 エポック

  • {‘test_acc’: 0.6442000269889832, ‘test_loss’: 1.5194581747055054}
  • Wall time: 1h 1min 44s
  • Tesla T4
  • ReduceLROnPlateau

 

CIFAR 100 DM

from typing import Any, Callable, Optional, Sequence, Union
 
from pl_bolts.datamodules.vision_datamodule import VisionDataModule
#from pl_bolts.datasets import TrialCIFAR10
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pl_bolts.utils import _TORCHVISION_AVAILABLE
from pl_bolts.utils.warnings import warn_missing_pkg
 
if _TORCHVISION_AVAILABLE:
    from torchvision import transforms
    #from torchvision import transforms as transform_lib
    from torchvision.datasets import CIFAR100
else:  # pragma: no cover
    warn_missing_pkg('torchvision')
    CIFAR100 = None
def cifar100_normalization():
    if not _TORCHVISION_AVAILABLE:  # pragma: no cover
        raise ModuleNotFoundError(
            'You want to use `torchvision` which is not installed yet, install it with `pip install torchvision`.'
        )

    normalize = transforms.Normalize(
        mean=[x / 255.0 for x in [129.3, 124.1, 112.4]],
        std=[x / 255.0 for x in [68.2, 65.4, 70.4]],
        # cifar10
        #mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
        #std=[x / 255.0 for x in [63.0, 62.1, 66.7]],
    )
    return normalize
class CIFAR100DataModule(VisionDataModule):
    """
    .. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/
        Plot-of-a-Subset-of-Images-from-the-CIFAR-10-Dataset.png
        :width: 400
        :alt: CIFAR-10
    Specs:
        - 10 classes (1 per class)
        - Each image is (3 x 32 x 32)
    Standard CIFAR10, train, val, test splits and transforms
    Transforms::
        mnist_transforms = transform_lib.Compose([
            transform_lib.ToTensor(),
            transforms.Normalize(
                mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
                std=[x / 255.0 for x in [63.0, 62.1, 66.7]]
            )
        ])
    Example::
        from pl_bolts.datamodules import CIFAR10DataModule
        dm = CIFAR10DataModule(PATH)
        model = LitModel()
        Trainer().fit(model, datamodule=dm)
    Or you can set your own transforms
    Example::
        dm.train_transforms = ...
        dm.test_transforms = ...
        dm.val_transforms  = ...
    """
    name = "cifar100"
    dataset_cls = CIFAR100
    dims = (3, 32, 32)

    def __init__(
        self,
        data_dir: Optional[str] = None,
        val_split: Union[int, float] = 0.2,
        num_workers: int = 16,
        normalize: bool = False,
        batch_size: int = 32,
        seed: int = 42,
        shuffle: bool = False,
        pin_memory: bool = False,
        drop_last: bool = False,
        *args: Any,
        **kwargs: Any,
    ) -> None:
        """
        Args:
            data_dir: Where to save/load the data
            val_split: Percent (float) or number (int) of samples to use for the validation split
            num_workers: How many workers to use for loading data
            normalize: If true applies image normalize
            batch_size: How many samples per batch to load
            seed: Random seed to be used for train/val/test splits
            shuffle: If true shuffles the train data every epoch
            pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before
                        returning them
            drop_last: If true drops the last incomplete batch
        """
        super().__init__(  # type: ignore[misc]
            data_dir=data_dir,
            val_split=val_split,
            num_workers=num_workers,
            normalize=normalize,
            batch_size=batch_size,
            seed=seed,
            shuffle=shuffle,
            pin_memory=pin_memory,
            drop_last=drop_last,
            *args,
            **kwargs,
        )

    @property
    def num_samples(self) -> int:
        train_len, _ = self._get_splits(len_dataset=50_000)
        return train_len

    @property
    def num_classes(self) -> int:
        """
        Return:
            10
        """
        return 100

    def default_transforms(self) -> Callable:
        if self.normalize:
            cf100_transforms = transforms.Compose([transform_lib.ToTensor(), cifar100_normalization()])
        else:
            cf100_transforms = transforms.Compose([transform_lib.ToTensor()])

        return cf100_transforms

 

モデル

import torch
import torch.nn as nn
class Fire(nn.Module):

    def __init__(self, in_channel, out_channel, squzee_channel):

        super().__init__()
        self.squeeze = nn.Sequential(
            nn.Conv2d(in_channel, squzee_channel, 1),
            nn.BatchNorm2d(squzee_channel),
            nn.ReLU(inplace=True)
        )

        self.expand_1x1 = nn.Sequential(
            nn.Conv2d(squzee_channel, int(out_channel / 2), 1),
            nn.BatchNorm2d(int(out_channel / 2)),
            nn.ReLU(inplace=True)
        )

        self.expand_3x3 = nn.Sequential(
            nn.Conv2d(squzee_channel, int(out_channel / 2), 3, padding=1),
            nn.BatchNorm2d(int(out_channel / 2)),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):

        x = self.squeeze(x)
        x = torch.cat([
            self.expand_1x1(x),
            self.expand_3x3(x)
        ], 1)

        return x

class SqueezeNet(nn.Module):

    """mobile net with simple bypass"""
    def __init__(self, class_num=100):

        super().__init__()
        self.stem = nn.Sequential(
            nn.Conv2d(3, 96, 3, padding=1),
            nn.BatchNorm2d(96),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2)
        )

        self.fire2 = Fire(96, 128, 16)
        self.fire3 = Fire(128, 128, 16)
        self.fire4 = Fire(128, 256, 32)
        self.fire5 = Fire(256, 256, 32)
        self.fire6 = Fire(256, 384, 48)
        self.fire7 = Fire(384, 384, 48)
        self.fire8 = Fire(384, 512, 64)
        self.fire9 = Fire(512, 512, 64)

        self.conv10 = nn.Conv2d(512, class_num, 1)
        self.avg = nn.AdaptiveAvgPool2d(1)
        self.maxpool = nn.MaxPool2d(2, 2)

    def forward(self, x):
        x = self.stem(x)

        f2 = self.fire2(x)
        f3 = self.fire3(f2) + f2
        f4 = self.fire4(f3)
        f4 = self.maxpool(f4)

        f5 = self.fire5(f4) + f4
        f6 = self.fire6(f5)
        f7 = self.fire7(f6) + f6
        f8 = self.fire8(f7)
        f8 = self.maxpool(f8)

        f9 = self.fire9(f8)
        c10 = self.conv10(f9)

        x = self.avg(c10)
        x = x.view(x.size(0), -1)

        return x

def squeezenet(class_num=100):
    return SqueezeNet(class_num=class_num)
net = squeezenet()
print(net)
y = net(torch.randn(1, 3, 32, 32))
print(y.size())
SqueezeNet(
  (stem): Sequential(
    (0): Conv2d(3, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fire2): Fire(
    (squeeze): Sequential(
      (0): Conv2d(96, 16, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_1x1): Sequential(
      (0): Conv2d(16, 64, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_3x3): Sequential(
      (0): Conv2d(16, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
  )
  (fire3): Fire(
    (squeeze): Sequential(
      (0): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_1x1): Sequential(
      (0): Conv2d(16, 64, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_3x3): Sequential(
      (0): Conv2d(16, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
  )
  (fire4): Fire(
    (squeeze): Sequential(
      (0): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_1x1): Sequential(
      (0): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_3x3): Sequential(
      (0): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
  )
  (fire5): Fire(
    (squeeze): Sequential(
      (0): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_1x1): Sequential(
      (0): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_3x3): Sequential(
      (0): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
  )
  (fire6): Fire(
    (squeeze): Sequential(
      (0): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_1x1): Sequential(
      (0): Conv2d(48, 192, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_3x3): Sequential(
      (0): Conv2d(48, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
  )
  (fire7): Fire(
    (squeeze): Sequential(
      (0): Conv2d(384, 48, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_1x1): Sequential(
      (0): Conv2d(48, 192, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_3x3): Sequential(
      (0): Conv2d(48, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
  )
  (fire8): Fire(
    (squeeze): Sequential(
      (0): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_1x1): Sequential(
      (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_3x3): Sequential(
      (0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
  )
  (fire9): Fire(
    (squeeze): Sequential(
      (0): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_1x1): Sequential(
      (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
      (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
    (expand_3x3): Sequential(
      (0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
    )
  )
  (conv10): Conv2d(512, 100, kernel_size=(1, 1), stride=(1, 1))
  (avg): AdaptiveAvgPool2d(output_size=1)
  (maxpool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
torch.Size([1, 100])
from torchsummary import summary
 
summary(squeezenet().to('cuda'), (3, 32, 32))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 96, 32, 32]           2,688
       BatchNorm2d-2           [-1, 96, 32, 32]             192
              ReLU-3           [-1, 96, 32, 32]               0
         MaxPool2d-4           [-1, 96, 16, 16]               0
            Conv2d-5           [-1, 16, 16, 16]           1,552
       BatchNorm2d-6           [-1, 16, 16, 16]              32
              ReLU-7           [-1, 16, 16, 16]               0
            Conv2d-8           [-1, 64, 16, 16]           1,088
       BatchNorm2d-9           [-1, 64, 16, 16]             128
             ReLU-10           [-1, 64, 16, 16]               0
           Conv2d-11           [-1, 64, 16, 16]           9,280
      BatchNorm2d-12           [-1, 64, 16, 16]             128
             ReLU-13           [-1, 64, 16, 16]               0
             Fire-14          [-1, 128, 16, 16]               0
           Conv2d-15           [-1, 16, 16, 16]           2,064
      BatchNorm2d-16           [-1, 16, 16, 16]              32
             ReLU-17           [-1, 16, 16, 16]               0
           Conv2d-18           [-1, 64, 16, 16]           1,088
      BatchNorm2d-19           [-1, 64, 16, 16]             128
             ReLU-20           [-1, 64, 16, 16]               0
           Conv2d-21           [-1, 64, 16, 16]           9,280
      BatchNorm2d-22           [-1, 64, 16, 16]             128
             ReLU-23           [-1, 64, 16, 16]               0
             Fire-24          [-1, 128, 16, 16]               0
           Conv2d-25           [-1, 32, 16, 16]           4,128
      BatchNorm2d-26           [-1, 32, 16, 16]              64
             ReLU-27           [-1, 32, 16, 16]               0
           Conv2d-28          [-1, 128, 16, 16]           4,224
      BatchNorm2d-29          [-1, 128, 16, 16]             256
             ReLU-30          [-1, 128, 16, 16]               0
           Conv2d-31          [-1, 128, 16, 16]          36,992
      BatchNorm2d-32          [-1, 128, 16, 16]             256
             ReLU-33          [-1, 128, 16, 16]               0
             Fire-34          [-1, 256, 16, 16]               0
        MaxPool2d-35            [-1, 256, 8, 8]               0
           Conv2d-36             [-1, 32, 8, 8]           8,224
      BatchNorm2d-37             [-1, 32, 8, 8]              64
             ReLU-38             [-1, 32, 8, 8]               0
           Conv2d-39            [-1, 128, 8, 8]           4,224
      BatchNorm2d-40            [-1, 128, 8, 8]             256
             ReLU-41            [-1, 128, 8, 8]               0
           Conv2d-42            [-1, 128, 8, 8]          36,992
      BatchNorm2d-43            [-1, 128, 8, 8]             256
             ReLU-44            [-1, 128, 8, 8]               0
             Fire-45            [-1, 256, 8, 8]               0
           Conv2d-46             [-1, 48, 8, 8]          12,336
      BatchNorm2d-47             [-1, 48, 8, 8]              96
             ReLU-48             [-1, 48, 8, 8]               0
           Conv2d-49            [-1, 192, 8, 8]           9,408
      BatchNorm2d-50            [-1, 192, 8, 8]             384
             ReLU-51            [-1, 192, 8, 8]               0
           Conv2d-52            [-1, 192, 8, 8]          83,136
      BatchNorm2d-53            [-1, 192, 8, 8]             384
             ReLU-54            [-1, 192, 8, 8]               0
             Fire-55            [-1, 384, 8, 8]               0
           Conv2d-56             [-1, 48, 8, 8]          18,480
      BatchNorm2d-57             [-1, 48, 8, 8]              96
             ReLU-58             [-1, 48, 8, 8]               0
           Conv2d-59            [-1, 192, 8, 8]           9,408
      BatchNorm2d-60            [-1, 192, 8, 8]             384
             ReLU-61            [-1, 192, 8, 8]               0
           Conv2d-62            [-1, 192, 8, 8]          83,136
      BatchNorm2d-63            [-1, 192, 8, 8]             384
             ReLU-64            [-1, 192, 8, 8]               0
             Fire-65            [-1, 384, 8, 8]               0
           Conv2d-66             [-1, 64, 8, 8]          24,640
      BatchNorm2d-67             [-1, 64, 8, 8]             128
             ReLU-68             [-1, 64, 8, 8]               0
           Conv2d-69            [-1, 256, 8, 8]          16,640
      BatchNorm2d-70            [-1, 256, 8, 8]             512
             ReLU-71            [-1, 256, 8, 8]               0
           Conv2d-72            [-1, 256, 8, 8]         147,712
      BatchNorm2d-73            [-1, 256, 8, 8]             512
             ReLU-74            [-1, 256, 8, 8]               0
             Fire-75            [-1, 512, 8, 8]               0
        MaxPool2d-76            [-1, 512, 4, 4]               0
           Conv2d-77             [-1, 64, 4, 4]          32,832
      BatchNorm2d-78             [-1, 64, 4, 4]             128
             ReLU-79             [-1, 64, 4, 4]               0
           Conv2d-80            [-1, 256, 4, 4]          16,640
      BatchNorm2d-81            [-1, 256, 4, 4]             512
             ReLU-82            [-1, 256, 4, 4]               0
           Conv2d-83            [-1, 256, 4, 4]         147,712
      BatchNorm2d-84            [-1, 256, 4, 4]             512
             ReLU-85            [-1, 256, 4, 4]               0
             Fire-86            [-1, 512, 4, 4]               0
           Conv2d-87            [-1, 100, 4, 4]          51,300
AdaptiveAvgPool2d-88            [-1, 100, 1, 1]               0
================================================================
Total params: 781,156
Trainable params: 781,156
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 10.57
Params size (MB): 2.98
Estimated Total Size (MB): 13.56
----------------------------------------------------------------

 

Lightning モジュール

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau
from torch.optim.swa_utils import AveragedModel, update_bn
import torchvision
 
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping
from pytorch_lightning.metrics.functional import accuracy
#from pl_bolts.datamodules import CIFAR10DataModule
#from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
batch_size = 50
 
train_transforms = torchvision.transforms.Compose([
    torchvision.transforms.RandomCrop(32, padding=4),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    cifar100_normalization(),
])
 
test_transforms = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    cifar100_normalization(),
])
 
cifar100_dm = CIFAR100DataModule(
    batch_size=batch_size,
    num_workers=8,
    train_transforms=train_transforms,
    test_transforms=test_transforms,
    val_transforms=test_transforms,
)
class LitCifar100(pl.LightningModule):
    def __init__(self, lr=0.05, factor=0.8):
        super().__init__()
  
        self.save_hyperparameters()
        self.model = squeezenet()
 
    def forward(self, x):
        out = self.model(x)
        return F.log_softmax(out, dim=1)
  
    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = F.log_softmax(self.model(x), dim=1)
        loss = F.nll_loss(logits, y)
        self.log('train_loss', loss)
        return loss
  
    def evaluate(self, batch, stage=None):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y)
  
        if stage:
            self.log(f'{stage}_loss', loss, prog_bar=True)
            self.log(f'{stage}_acc', acc, prog_bar=True)
  
    def validation_step(self, batch, batch_idx):
        self.evaluate(batch, 'val')
  
    def test_step(self, batch, batch_idx):
        self.evaluate(batch, 'test')
  
    def configure_optimizers(self):
        optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
 
        return {
          'optimizer': optimizer,
          'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=5, factor=self.hparams.factor, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5),
          'monitor': 'val_acc'
        }

 

訓練 / 評価

%%time
 
model = LitCifar100(lr=0.05, factor=0.5)
model.datamodule = cifar100_dm
  
trainer = pl.Trainer(
    gpus=1,
    max_epochs=100,
    progress_bar_refresh_rate=100,
    logger=pl.loggers.TensorBoardLogger('tblogs/', name='squeezenet'),
    callbacks=[LearningRateMonitor(logging_interval='step')],
)
  
trainer.fit(model, cifar100_dm)
trainer.test(model, datamodule=cifar100_dm);
  | Name  | Type       | Params
-------------------------------------
0 | model | SqueezeNet | 781 K 
-------------------------------------
781 K     Trainable params
0         Non-trainable params
781 K     Total params
3.125     Total estimated model params size (MB)
(...)
Epoch    23: reducing learning rate of group 0 to 2.5000e-02.
Epoch    34: reducing learning rate of group 0 to 1.2500e-02.
Epoch    42: reducing learning rate of group 0 to 6.2500e-03.
Epoch    49: reducing learning rate of group 0 to 3.1250e-03.
Epoch    59: reducing learning rate of group 0 to 1.5625e-03.
Epoch    72: reducing learning rate of group 0 to 7.8125e-04.
Epoch    84: reducing learning rate of group 0 to 3.9063e-04.
Epoch    99: reducing learning rate of group 0 to 1.9531e-04.
(...)
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.6442000269889832, 'test_loss': 1.5194581747055054}
--------------------------------------------------------------------------------
CPU times: user 53min 49s, sys: 1min 42s, total: 55min 31s
Wall time: 1h 1min 44s
 

以上