PyTorch Lightning 1.1: research : CIFAR100 (ShuffleNet)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/24/2021 (1.1.x)
* 本ページは以下の CIFAR10 用リソースを参考に CIFAR100 で遂行した実験結果のレポートです:
- notebooks : PyTorch Lightning CIFAR10 ~94% Baseline Tutorial
- Train CIFAR10 with PyTorch
- Pytorch-cifar100
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
★ 無料セミナー実施中 ★ クラスキャット主催 人工知能 & ビジネス Web セミナー
人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
- お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
- Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :
人工知能研究開発支援 | 人工知能研修サービス | テレワーク & オンライン授業を支援 |
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。) |
◆ お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。
株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション |
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/ |
Facebook: https://www.facebook.com/ClassCatJP/ |
research: CIFAR100 (ShuffleNet)
仕様
- Total params: 1,360,896 (1.4M)
- Trainable params: 1,360,896
- Non-trainable params: 0
結果
100 エポック
- {‘test_acc’: 0.6672999858856201, ‘test_loss’: 1.4519164562225342}
- Wall time: 1h 26min 15s
- Tesla T4
- ReduceLROnPlateau
CIFAR 100 DM
from typing import Any, Callable, Optional, Sequence, Union from pl_bolts.datamodules.vision_datamodule import VisionDataModule #from pl_bolts.datasets import TrialCIFAR10 #from pl_bolts.transforms.dataset_normalizations import cifar10_normalization from pl_bolts.utils import _TORCHVISION_AVAILABLE from pl_bolts.utils.warnings import warn_missing_pkg if _TORCHVISION_AVAILABLE: from torchvision import transforms #from torchvision import transforms as transform_lib from torchvision.datasets import CIFAR100 else: # pragma: no cover warn_missing_pkg('torchvision') CIFAR100 = None
def cifar100_normalization(): if not _TORCHVISION_AVAILABLE: # pragma: no cover raise ModuleNotFoundError( 'You want to use `torchvision` which is not installed yet, install it with `pip install torchvision`.' ) normalize = transforms.Normalize( mean=[x / 255.0 for x in [129.3, 124.1, 112.4]], std=[x / 255.0 for x in [68.2, 65.4, 70.4]], # cifar10 #mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], #std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ) return normalize
class CIFAR100DataModule(VisionDataModule): """ .. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/ Plot-of-a-Subset-of-Images-from-the-CIFAR-10-Dataset.png :width: 400 :alt: CIFAR-10 Specs: - 10 classes (1 per class) - Each image is (3 x 32 x 32) Standard CIFAR10, train, val, test splits and transforms Transforms:: mnist_transforms = transform_lib.Compose([ transform_lib.ToTensor(), transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]] ) ]) Example:: from pl_bolts.datamodules import CIFAR10DataModule dm = CIFAR10DataModule(PATH) model = LitModel() Trainer().fit(model, datamodule=dm) Or you can set your own transforms Example:: dm.train_transforms = ... dm.test_transforms = ... dm.val_transforms = ... """ name = "cifar100" dataset_cls = CIFAR100 dims = (3, 32, 32) def __init__( self, data_dir: Optional[str] = None, val_split: Union[int, float] = 0.2, num_workers: int = 16, normalize: bool = False, batch_size: int = 32, seed: int = 42, shuffle: bool = False, pin_memory: bool = False, drop_last: bool = False, *args: Any, **kwargs: Any, ) -> None: """ Args: data_dir: Where to save/load the data val_split: Percent (float) or number (int) of samples to use for the validation split num_workers: How many workers to use for loading data normalize: If true applies image normalize batch_size: How many samples per batch to load seed: Random seed to be used for train/val/test splits shuffle: If true shuffles the train data every epoch pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before returning them drop_last: If true drops the last incomplete batch """ super().__init__( # type: ignore[misc] data_dir=data_dir, val_split=val_split, num_workers=num_workers, normalize=normalize, batch_size=batch_size, seed=seed, shuffle=shuffle, pin_memory=pin_memory, drop_last=drop_last, *args, **kwargs, ) @property def num_samples(self) -> int: train_len, _ = self._get_splits(len_dataset=50_000) return train_len @property def num_classes(self) -> int: """ Return: 10 """ return 100 def default_transforms(self) -> Callable: if self.normalize: cf100_transforms = transforms.Compose([transform_lib.ToTensor(), cifar100_normalization()]) else: cf100_transforms = transforms.Compose([transform_lib.ToTensor()]) return cf100_transforms
モデル
import torch import torch.nn as nn import torch.nn.functional as F
def channel_split(x, split): """split a tensor into two pieces along channel dimension Args: x: input tensor split:(int) channel size for each pieces """ assert x.size(1) == split * 2 return torch.split(x, split, dim=1) def channel_shuffle(x, groups): """channel shuffle operation Args: x: input tensor groups: input branch number """ batch_size, channels, height, width = x.size() channels_per_group = int(channels // groups) x = x.view(batch_size, groups, channels_per_group, height, width) x = x.transpose(1, 2).contiguous() x = x.view(batch_size, -1, height, width) return x class ShuffleUnit(nn.Module): def __init__(self, in_channels, out_channels, stride): super().__init__() self.stride = stride self.in_channels = in_channels self.out_channels = out_channels if stride != 1 or in_channels != out_channels: self.residual = nn.Sequential( nn.Conv2d(in_channels, in_channels, 1), nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True), nn.Conv2d(in_channels, in_channels, 3, stride=stride, padding=1, groups=in_channels), nn.BatchNorm2d(in_channels), nn.Conv2d(in_channels, int(out_channels / 2), 1), nn.BatchNorm2d(int(out_channels / 2)), nn.ReLU(inplace=True) ) self.shortcut = nn.Sequential( nn.Conv2d(in_channels, in_channels, 3, stride=stride, padding=1, groups=in_channels), nn.BatchNorm2d(in_channels), nn.Conv2d(in_channels, int(out_channels / 2), 1), nn.BatchNorm2d(int(out_channels / 2)), nn.ReLU(inplace=True) ) else: self.shortcut = nn.Sequential() in_channels = int(in_channels / 2) self.residual = nn.Sequential( nn.Conv2d(in_channels, in_channels, 1), nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True), nn.Conv2d(in_channels, in_channels, 3, stride=stride, padding=1, groups=in_channels), nn.BatchNorm2d(in_channels), nn.Conv2d(in_channels, in_channels, 1), nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True) ) def forward(self, x): if self.stride == 1 and self.out_channels == self.in_channels: shortcut, residual = channel_split(x, int(self.in_channels / 2)) else: shortcut = x residual = x shortcut = self.shortcut(shortcut) residual = self.residual(residual) x = torch.cat([shortcut, residual], dim=1) x = channel_shuffle(x, 2) return x class ShuffleNetV2(nn.Module): def __init__(self, ratio=1, class_num=100): super().__init__() if ratio == 0.5: out_channels = [48, 96, 192, 1024] elif ratio == 1: out_channels = [116, 232, 464, 1024] elif ratio == 1.5: out_channels = [176, 352, 704, 1024] elif ratio == 2: out_channels = [244, 488, 976, 2048] else: ValueError('unsupported ratio number') self.pre = nn.Sequential( nn.Conv2d(3, 24, 3, padding=1), nn.BatchNorm2d(24) ) self.stage2 = self._make_stage(24, out_channels[0], 3) self.stage3 = self._make_stage(out_channels[0], out_channels[1], 7) self.stage4 = self._make_stage(out_channels[1], out_channels[2], 3) self.conv5 = nn.Sequential( nn.Conv2d(out_channels[2], out_channels[3], 1), nn.BatchNorm2d(out_channels[3]), nn.ReLU(inplace=True) ) self.fc = nn.Linear(out_channels[3], class_num) def forward(self, x): x = self.pre(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.conv5(x) x = F.adaptive_avg_pool2d(x, 1) x = x.view(x.size(0), -1) x = self.fc(x) return x def _make_stage(self, in_channels, out_channels, repeat): layers = [] layers.append(ShuffleUnit(in_channels, out_channels, 2)) while repeat: layers.append(ShuffleUnit(out_channels, out_channels, 1)) repeat -= 1 return nn.Sequential(*layers) def shufflenetv2(): return ShuffleNetV2()
net = squeezenet() print(net) y = net(torch.randn(1, 3, 32, 32)) print(y.size())
SqueezeNet( (stem): Sequential( (0): Conv2d(3, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (fire2): Fire( (squeeze): Sequential( (0): Conv2d(96, 16, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_1x1): Sequential( (0): Conv2d(16, 64, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_3x3): Sequential( (0): Conv2d(16, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) ) (fire3): Fire( (squeeze): Sequential( (0): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_1x1): Sequential( (0): Conv2d(16, 64, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_3x3): Sequential( (0): Conv2d(16, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) ) (fire4): Fire( (squeeze): Sequential( (0): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_1x1): Sequential( (0): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_3x3): Sequential( (0): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) ) (fire5): Fire( (squeeze): Sequential( (0): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_1x1): Sequential( (0): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_3x3): Sequential( (0): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) ) (fire6): Fire( (squeeze): Sequential( (0): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_1x1): Sequential( (0): Conv2d(48, 192, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_3x3): Sequential( (0): Conv2d(48, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) ) (fire7): Fire( (squeeze): Sequential( (0): Conv2d(384, 48, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_1x1): Sequential( (0): Conv2d(48, 192, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_3x3): Sequential( (0): Conv2d(48, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) ) (fire8): Fire( (squeeze): Sequential( (0): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_1x1): Sequential( (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_3x3): Sequential( (0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) ) (fire9): Fire( (squeeze): Sequential( (0): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_1x1): Sequential( (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (expand_3x3): Sequential( (0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) ) (conv10): Conv2d(512, 100, kernel_size=(1, 1), stride=(1, 1)) (avg): AdaptiveAvgPool2d(output_size=1) (maxpool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) torch.Size([1, 100])
from torchsummary import summary summary(shufflenetv2().to('cuda'), (3, 32, 32))
---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 24, 32, 32] 672 BatchNorm2d-2 [-1, 24, 32, 32] 48 Conv2d-3 [-1, 24, 16, 16] 240 BatchNorm2d-4 [-1, 24, 16, 16] 48 Conv2d-5 [-1, 58, 16, 16] 1,450 BatchNorm2d-6 [-1, 58, 16, 16] 116 ReLU-7 [-1, 58, 16, 16] 0 Conv2d-8 [-1, 24, 32, 32] 600 BatchNorm2d-9 [-1, 24, 32, 32] 48 ReLU-10 [-1, 24, 32, 32] 0 Conv2d-11 [-1, 24, 16, 16] 240 BatchNorm2d-12 [-1, 24, 16, 16] 48 Conv2d-13 [-1, 58, 16, 16] 1,450 BatchNorm2d-14 [-1, 58, 16, 16] 116 ReLU-15 [-1, 58, 16, 16] 0 ShuffleUnit-16 [-1, 116, 16, 16] 0 Conv2d-17 [-1, 58, 16, 16] 3,422 BatchNorm2d-18 [-1, 58, 16, 16] 116 ReLU-19 [-1, 58, 16, 16] 0 Conv2d-20 [-1, 58, 16, 16] 580 BatchNorm2d-21 [-1, 58, 16, 16] 116 Conv2d-22 [-1, 58, 16, 16] 3,422 BatchNorm2d-23 [-1, 58, 16, 16] 116 ReLU-24 [-1, 58, 16, 16] 0 ShuffleUnit-25 [-1, 116, 16, 16] 0 Conv2d-26 [-1, 58, 16, 16] 3,422 BatchNorm2d-27 [-1, 58, 16, 16] 116 ReLU-28 [-1, 58, 16, 16] 0 Conv2d-29 [-1, 58, 16, 16] 580 BatchNorm2d-30 [-1, 58, 16, 16] 116 Conv2d-31 [-1, 58, 16, 16] 3,422 BatchNorm2d-32 [-1, 58, 16, 16] 116 ReLU-33 [-1, 58, 16, 16] 0 ShuffleUnit-34 [-1, 116, 16, 16] 0 Conv2d-35 [-1, 58, 16, 16] 3,422 BatchNorm2d-36 [-1, 58, 16, 16] 116 ReLU-37 [-1, 58, 16, 16] 0 Conv2d-38 [-1, 58, 16, 16] 580 BatchNorm2d-39 [-1, 58, 16, 16] 116 Conv2d-40 [-1, 58, 16, 16] 3,422 BatchNorm2d-41 [-1, 58, 16, 16] 116 ReLU-42 [-1, 58, 16, 16] 0 ShuffleUnit-43 [-1, 116, 16, 16] 0 Conv2d-44 [-1, 116, 8, 8] 1,160 BatchNorm2d-45 [-1, 116, 8, 8] 232 Conv2d-46 [-1, 116, 8, 8] 13,572 BatchNorm2d-47 [-1, 116, 8, 8] 232 ReLU-48 [-1, 116, 8, 8] 0 Conv2d-49 [-1, 116, 16, 16] 13,572 BatchNorm2d-50 [-1, 116, 16, 16] 232 ReLU-51 [-1, 116, 16, 16] 0 Conv2d-52 [-1, 116, 8, 8] 1,160 BatchNorm2d-53 [-1, 116, 8, 8] 232 Conv2d-54 [-1, 116, 8, 8] 13,572 BatchNorm2d-55 [-1, 116, 8, 8] 232 ReLU-56 [-1, 116, 8, 8] 0 ShuffleUnit-57 [-1, 232, 8, 8] 0 Conv2d-58 [-1, 116, 8, 8] 13,572 BatchNorm2d-59 [-1, 116, 8, 8] 232 ReLU-60 [-1, 116, 8, 8] 0 Conv2d-61 [-1, 116, 8, 8] 1,160 BatchNorm2d-62 [-1, 116, 8, 8] 232 Conv2d-63 [-1, 116, 8, 8] 13,572 BatchNorm2d-64 [-1, 116, 8, 8] 232 ReLU-65 [-1, 116, 8, 8] 0 ShuffleUnit-66 [-1, 232, 8, 8] 0 Conv2d-67 [-1, 116, 8, 8] 13,572 BatchNorm2d-68 [-1, 116, 8, 8] 232 ReLU-69 [-1, 116, 8, 8] 0 Conv2d-70 [-1, 116, 8, 8] 1,160 BatchNorm2d-71 [-1, 116, 8, 8] 232 Conv2d-72 [-1, 116, 8, 8] 13,572 BatchNorm2d-73 [-1, 116, 8, 8] 232 ReLU-74 [-1, 116, 8, 8] 0 ShuffleUnit-75 [-1, 232, 8, 8] 0 Conv2d-76 [-1, 116, 8, 8] 13,572 BatchNorm2d-77 [-1, 116, 8, 8] 232 ReLU-78 [-1, 116, 8, 8] 0 Conv2d-79 [-1, 116, 8, 8] 1,160 BatchNorm2d-80 [-1, 116, 8, 8] 232 Conv2d-81 [-1, 116, 8, 8] 13,572 BatchNorm2d-82 [-1, 116, 8, 8] 232 ReLU-83 [-1, 116, 8, 8] 0 ShuffleUnit-84 [-1, 232, 8, 8] 0 Conv2d-85 [-1, 116, 8, 8] 13,572 BatchNorm2d-86 [-1, 116, 8, 8] 232 ReLU-87 [-1, 116, 8, 8] 0 Conv2d-88 [-1, 116, 8, 8] 1,160 BatchNorm2d-89 [-1, 116, 8, 8] 232 Conv2d-90 [-1, 116, 8, 8] 13,572 BatchNorm2d-91 [-1, 116, 8, 8] 232 ReLU-92 [-1, 116, 8, 8] 0 ShuffleUnit-93 [-1, 232, 8, 8] 0 Conv2d-94 [-1, 116, 8, 8] 13,572 BatchNorm2d-95 [-1, 116, 8, 8] 232 ReLU-96 [-1, 116, 8, 8] 0 Conv2d-97 [-1, 116, 8, 8] 1,160 BatchNorm2d-98 [-1, 116, 8, 8] 232 Conv2d-99 [-1, 116, 8, 8] 13,572 BatchNorm2d-100 [-1, 116, 8, 8] 232 ReLU-101 [-1, 116, 8, 8] 0 ShuffleUnit-102 [-1, 232, 8, 8] 0 Conv2d-103 [-1, 116, 8, 8] 13,572 BatchNorm2d-104 [-1, 116, 8, 8] 232 ReLU-105 [-1, 116, 8, 8] 0 Conv2d-106 [-1, 116, 8, 8] 1,160 BatchNorm2d-107 [-1, 116, 8, 8] 232 Conv2d-108 [-1, 116, 8, 8] 13,572 BatchNorm2d-109 [-1, 116, 8, 8] 232 ReLU-110 [-1, 116, 8, 8] 0 ShuffleUnit-111 [-1, 232, 8, 8] 0 Conv2d-112 [-1, 116, 8, 8] 13,572 BatchNorm2d-113 [-1, 116, 8, 8] 232 ReLU-114 [-1, 116, 8, 8] 0 Conv2d-115 [-1, 116, 8, 8] 1,160 BatchNorm2d-116 [-1, 116, 8, 8] 232 Conv2d-117 [-1, 116, 8, 8] 13,572 BatchNorm2d-118 [-1, 116, 8, 8] 232 ReLU-119 [-1, 116, 8, 8] 0 ShuffleUnit-120 [-1, 232, 8, 8] 0 Conv2d-121 [-1, 232, 4, 4] 2,320 BatchNorm2d-122 [-1, 232, 4, 4] 464 Conv2d-123 [-1, 232, 4, 4] 54,056 BatchNorm2d-124 [-1, 232, 4, 4] 464 ReLU-125 [-1, 232, 4, 4] 0 Conv2d-126 [-1, 232, 8, 8] 54,056 BatchNorm2d-127 [-1, 232, 8, 8] 464 ReLU-128 [-1, 232, 8, 8] 0 Conv2d-129 [-1, 232, 4, 4] 2,320 BatchNorm2d-130 [-1, 232, 4, 4] 464 Conv2d-131 [-1, 232, 4, 4] 54,056 BatchNorm2d-132 [-1, 232, 4, 4] 464 ReLU-133 [-1, 232, 4, 4] 0 ShuffleUnit-134 [-1, 464, 4, 4] 0 Conv2d-135 [-1, 232, 4, 4] 54,056 BatchNorm2d-136 [-1, 232, 4, 4] 464 ReLU-137 [-1, 232, 4, 4] 0 Conv2d-138 [-1, 232, 4, 4] 2,320 BatchNorm2d-139 [-1, 232, 4, 4] 464 Conv2d-140 [-1, 232, 4, 4] 54,056 BatchNorm2d-141 [-1, 232, 4, 4] 464 ReLU-142 [-1, 232, 4, 4] 0 ShuffleUnit-143 [-1, 464, 4, 4] 0 Conv2d-144 [-1, 232, 4, 4] 54,056 BatchNorm2d-145 [-1, 232, 4, 4] 464 ReLU-146 [-1, 232, 4, 4] 0 Conv2d-147 [-1, 232, 4, 4] 2,320 BatchNorm2d-148 [-1, 232, 4, 4] 464 Conv2d-149 [-1, 232, 4, 4] 54,056 BatchNorm2d-150 [-1, 232, 4, 4] 464 ReLU-151 [-1, 232, 4, 4] 0 ShuffleUnit-152 [-1, 464, 4, 4] 0 Conv2d-153 [-1, 232, 4, 4] 54,056 BatchNorm2d-154 [-1, 232, 4, 4] 464 ReLU-155 [-1, 232, 4, 4] 0 Conv2d-156 [-1, 232, 4, 4] 2,320 BatchNorm2d-157 [-1, 232, 4, 4] 464 Conv2d-158 [-1, 232, 4, 4] 54,056 BatchNorm2d-159 [-1, 232, 4, 4] 464 ReLU-160 [-1, 232, 4, 4] 0 ShuffleUnit-161 [-1, 464, 4, 4] 0 Conv2d-162 [-1, 1024, 4, 4] 476,160 BatchNorm2d-163 [-1, 1024, 4, 4] 2,048 ReLU-164 [-1, 1024, 4, 4] 0 Linear-165 [-1, 100] 102,500 ================================================================ Total params: 1,360,896 Trainable params: 1,360,896 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.01 Forward/backward pass size (MB): 12.66 Params size (MB): 5.19 Estimated Total Size (MB): 17.86 ----------------------------------------------------------------
Lightning モジュール
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau from torch.optim.swa_utils import AveragedModel, update_bn import torchvision import pytorch_lightning as pl from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping from pytorch_lightning.metrics.functional import accuracy #from pl_bolts.datamodules import CIFAR10DataModule #from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
batch_size = 50 train_transforms = torchvision.transforms.Compose([ torchvision.transforms.RandomCrop(32, padding=4), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), cifar100_normalization(), ]) test_transforms = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), cifar100_normalization(), ]) cifar100_dm = CIFAR100DataModule( batch_size=batch_size, num_workers=8, train_transforms=train_transforms, test_transforms=test_transforms, val_transforms=test_transforms, )
class LitCifar100(pl.LightningModule): def __init__(self, lr=0.05, factor=0.8): super().__init__() self.save_hyperparameters() self.model = shufflenetv2() def forward(self, x): out = self.model(x) return F.log_softmax(out, dim=1) def training_step(self, batch, batch_idx): x, y = batch logits = F.log_softmax(self.model(x), dim=1) loss = F.nll_loss(logits, y) self.log('train_loss', loss) return loss def evaluate(self, batch, stage=None): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) if stage: self.log(f'{stage}_loss', loss, prog_bar=True) self.log(f'{stage}_acc', acc, prog_bar=True) def validation_step(self, batch, batch_idx): self.evaluate(batch, 'val') def test_step(self, batch, batch_idx): self.evaluate(batch, 'test') def configure_optimizers(self): optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4) return { 'optimizer': optimizer, 'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=5, factor=self.hparams.factor, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5), 'monitor': 'val_acc' }
訓練 / 評価
%%time model = LitCifar100(lr=0.05, factor=0.5) model.datamodule = cifar100_dm trainer = pl.Trainer( gpus=1, max_epochs=100, progress_bar_refresh_rate=100, logger=pl.loggers.TensorBoardLogger('tblogs/', name='shufflenetv2'), callbacks=[LearningRateMonitor(logging_interval='step')], ) trainer.fit(model, cifar100_dm) trainer.test(model, datamodule=cifar100_dm);
| Name | Type | Params --------------------------------------- 0 | model | ShuffleNetV2 | 1.4 M --------------------------------------- 1.4 M Trainable params 0 Non-trainable params 1.4 M Total params 5.444 Total estimated model params size (MB) (...) Epoch 32: reducing learning rate of group 0 to 2.5000e-02. Epoch 39: reducing learning rate of group 0 to 1.2500e-02. Epoch 47: reducing learning rate of group 0 to 6.2500e-03. Epoch 56: reducing learning rate of group 0 to 3.1250e-03. Epoch 66: reducing learning rate of group 0 to 1.5625e-03. Epoch 78: reducing learning rate of group 0 to 7.8125e-04. Epoch 85: reducing learning rate of group 0 to 3.9063e-04. Epoch 95: reducing learning rate of group 0 to 1.9531e-04. (...) -------------------------------------------------------------------------------- DATALOADER:0 TEST RESULTS {'test_acc': 0.6672999858856201, 'test_loss': 1.4519164562225342} -------------------------------------------------------------------------------- CPU times: user 1h 21min 24s, sys: 1min 37s, total: 1h 23min 1s Wall time: 1h 26min 15s
以上