PyTorch Lightning 1.1 : research: CIFAR10 (ResNeXt-29)

PyTorch Lightning 1.1: research : CIFAR10 (ResNeXt-29)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/22/2021 (1.1.x)

* 本ページは、以下のリソースを参考にして遂行した実験結果のレポートです:

* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

無料セミナー実施中 クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
  • Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :

人工知能研究開発支援 人工知能研修サービス テレワーク & オンライン授業を支援
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。)

お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/

 

research: CIFAR10 (ResNeXt-29)

結果

150 エポック: ReduceLROnPlateau

  • ResNeXt-29 (2x64d) – {‘test_acc’: 0.9379000067710876, ‘test_loss’: 0.20406362414360046} – Wall time: 3h 45min 5s

 

コード

import torch
import torch.nn as nn
import torch.nn.functional as F


class Block(nn.Module):
    '''Grouped convolution block.'''
    expansion = 2

    def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1):
        super(Block, self).__init__()
        group_width = cardinality * bottleneck_width
        self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(group_width)
        self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
        self.bn2 = nn.BatchNorm2d(group_width)
        self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*group_width)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*group_width:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*group_width)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class ResNeXt(nn.Module):
    def __init__(self, num_blocks, cardinality, bottleneck_width, num_classes=10):
        super(ResNeXt, self).__init__()
        self.cardinality = cardinality
        self.bottleneck_width = bottleneck_width
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(num_blocks[0], 1)
        self.layer2 = self._make_layer(num_blocks[1], 2)
        self.layer3 = self._make_layer(num_blocks[2], 2)
        # self.layer4 = self._make_layer(num_blocks[3], 2)
        self.linear = nn.Linear(cardinality*bottleneck_width*8, num_classes)

    def _make_layer(self, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(Block(self.in_planes, self.cardinality, self.bottleneck_width, stride))
            self.in_planes = Block.expansion * self.cardinality * self.bottleneck_width
        # Increase bottleneck_width by 2 after each stage.
        self.bottleneck_width *= 2
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        # out = self.layer4(out)
        out = F.avg_pool2d(out, 8)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


def ResNeXt29_2x64d():
    return ResNeXt(num_blocks=[3,3,3], cardinality=2, bottleneck_width=64)

def ResNeXt29_4x64d():
    return ResNeXt(num_blocks=[3,3,3], cardinality=4, bottleneck_width=64)

def ResNeXt29_8x64d():
    return ResNeXt(num_blocks=[3,3,3], cardinality=8, bottleneck_width=64)

def ResNeXt29_32x4d():
    return ResNeXt(num_blocks=[3,3,3], cardinality=32, bottleneck_width=4)
net = ResNeXt29_2x64d()
print(net)
x = torch.randn(1,3,32,32)
y = net(x)
print(y.size())
ResNeXt(
  (conv1): Conv2d(3, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer1): Sequential(
    (0): Block(
      (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Block(
      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): Block(
      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (layer2): Sequential(
    (0): Block(
      (conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Block(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): Block(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (layer3): Sequential(
    (0): Block(
      (conv1): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Block(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (2): Block(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
  )
  (linear): Linear(in_features=1024, out_features=10, bias=True)
)
torch.Size([1, 10])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device
device(type='cuda')
from torchsummary import summary

summary(ResNeXt29_2x64d().to('cuda'), (3, 32, 32))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 32, 32]             192
       BatchNorm2d-2           [-1, 64, 32, 32]             128
            Conv2d-3          [-1, 128, 32, 32]           8,192
       BatchNorm2d-4          [-1, 128, 32, 32]             256
            Conv2d-5          [-1, 128, 32, 32]          73,728
       BatchNorm2d-6          [-1, 128, 32, 32]             256
            Conv2d-7          [-1, 256, 32, 32]          32,768
       BatchNorm2d-8          [-1, 256, 32, 32]             512
            Conv2d-9          [-1, 256, 32, 32]          16,384
      BatchNorm2d-10          [-1, 256, 32, 32]             512
            Block-11          [-1, 256, 32, 32]               0
           Conv2d-12          [-1, 128, 32, 32]          32,768
      BatchNorm2d-13          [-1, 128, 32, 32]             256
           Conv2d-14          [-1, 128, 32, 32]          73,728
      BatchNorm2d-15          [-1, 128, 32, 32]             256
           Conv2d-16          [-1, 256, 32, 32]          32,768
      BatchNorm2d-17          [-1, 256, 32, 32]             512
            Block-18          [-1, 256, 32, 32]               0
           Conv2d-19          [-1, 128, 32, 32]          32,768
      BatchNorm2d-20          [-1, 128, 32, 32]             256
           Conv2d-21          [-1, 128, 32, 32]          73,728
      BatchNorm2d-22          [-1, 128, 32, 32]             256
           Conv2d-23          [-1, 256, 32, 32]          32,768
      BatchNorm2d-24          [-1, 256, 32, 32]             512
            Block-25          [-1, 256, 32, 32]               0
           Conv2d-26          [-1, 256, 32, 32]          65,536
      BatchNorm2d-27          [-1, 256, 32, 32]             512
           Conv2d-28          [-1, 256, 16, 16]         294,912
      BatchNorm2d-29          [-1, 256, 16, 16]             512
           Conv2d-30          [-1, 512, 16, 16]         131,072
      BatchNorm2d-31          [-1, 512, 16, 16]           1,024
           Conv2d-32          [-1, 512, 16, 16]         131,072
      BatchNorm2d-33          [-1, 512, 16, 16]           1,024
            Block-34          [-1, 512, 16, 16]               0
           Conv2d-35          [-1, 256, 16, 16]         131,072
      BatchNorm2d-36          [-1, 256, 16, 16]             512
           Conv2d-37          [-1, 256, 16, 16]         294,912
      BatchNorm2d-38          [-1, 256, 16, 16]             512
           Conv2d-39          [-1, 512, 16, 16]         131,072
      BatchNorm2d-40          [-1, 512, 16, 16]           1,024
            Block-41          [-1, 512, 16, 16]               0
           Conv2d-42          [-1, 256, 16, 16]         131,072
      BatchNorm2d-43          [-1, 256, 16, 16]             512
           Conv2d-44          [-1, 256, 16, 16]         294,912
      BatchNorm2d-45          [-1, 256, 16, 16]             512
           Conv2d-46          [-1, 512, 16, 16]         131,072
      BatchNorm2d-47          [-1, 512, 16, 16]           1,024
            Block-48          [-1, 512, 16, 16]               0
           Conv2d-49          [-1, 512, 16, 16]         262,144
      BatchNorm2d-50          [-1, 512, 16, 16]           1,024
           Conv2d-51            [-1, 512, 8, 8]       1,179,648
      BatchNorm2d-52            [-1, 512, 8, 8]           1,024
           Conv2d-53           [-1, 1024, 8, 8]         524,288
      BatchNorm2d-54           [-1, 1024, 8, 8]           2,048
           Conv2d-55           [-1, 1024, 8, 8]         524,288
      BatchNorm2d-56           [-1, 1024, 8, 8]           2,048
            Block-57           [-1, 1024, 8, 8]               0
           Conv2d-58            [-1, 512, 8, 8]         524,288
      BatchNorm2d-59            [-1, 512, 8, 8]           1,024
           Conv2d-60            [-1, 512, 8, 8]       1,179,648
      BatchNorm2d-61            [-1, 512, 8, 8]           1,024
           Conv2d-62           [-1, 1024, 8, 8]         524,288
      BatchNorm2d-63           [-1, 1024, 8, 8]           2,048
            Block-64           [-1, 1024, 8, 8]               0
           Conv2d-65            [-1, 512, 8, 8]         524,288
      BatchNorm2d-66            [-1, 512, 8, 8]           1,024
           Conv2d-67            [-1, 512, 8, 8]       1,179,648
      BatchNorm2d-68            [-1, 512, 8, 8]           1,024
           Conv2d-69           [-1, 1024, 8, 8]         524,288
      BatchNorm2d-70           [-1, 1024, 8, 8]           2,048
            Block-71           [-1, 1024, 8, 8]               0
           Linear-72                   [-1, 10]          10,250
================================================================
Total params: 9,128,778
Trainable params: 9,128,778
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 65.00
Params size (MB): 34.82
Estimated Total Size (MB): 99.84
----------------------------------------------------------------

 

ReduceLROnPlateau スケジューラ

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau
from torch.optim.swa_utils import AveragedModel, update_bn
import torchvision
 
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping
from pytorch_lightning.metrics.functional import accuracy
from pl_bolts.datamodules import CIFAR10DataModule
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
batch_size = 50
 
train_transforms = torchvision.transforms.Compose([
    torchvision.transforms.RandomCrop(32, padding=4),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    cifar10_normalization(),
])
 
test_transforms = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    cifar10_normalization(),
])
 
cifar10_dm = CIFAR10DataModule(
    batch_size=batch_size,
    train_transforms=train_transforms,
    test_transforms=test_transforms,
    val_transforms=test_transforms,
)
class LitCifar10(pl.LightningModule):
    def __init__(self, lr=0.05, factor=0.8):
        super().__init__()
 
        self.save_hyperparameters()
        self.model = ResNeXt29_2x64d()

    def forward(self, x):
        out = self.model(x)
        return F.log_softmax(out, dim=1)
 
    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = F.log_softmax(self.model(x), dim=1)
        loss = F.nll_loss(logits, y)
        self.log('train_loss', loss)
        return loss
 
    def evaluate(self, batch, stage=None):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y)
 
        if stage:
            self.log(f'{stage}_loss', loss, prog_bar=True)
            self.log(f'{stage}_acc', acc, prog_bar=True)
 
    def validation_step(self, batch, batch_idx):
        self.evaluate(batch, 'val')
 
    def test_step(self, batch, batch_idx):
        self.evaluate(batch, 'test')
 
    def configure_optimizers(self):
        if False:
            optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr, weight_decay=0, eps=1e-3)
        else:
            optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)

        return {
          'optimizer': optimizer,
          'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=4, factor=self.hparams.factor, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5),
          #'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=4, factor=0.8, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5),
          'monitor': 'val_acc'
        }

    def xconfigure_optimizers(self):
        #print("###")
        #print(self.hparams)
        optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
        steps_per_epoch = 45000 // batch_size
        scheduler_dict = {
            #'scheduler': ExponentialLR(optimizer, gamma=0.1),
            #'interval': 'epoch',
            'scheduler': OneCycleLR(optimizer, max_lr=0.1, pct_start=0.2, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch),
            #'scheduler': CyclicLR(optimizer, base_lr=0.001, max_lr=0.1, step_size_up=steps_per_epoch*2, mode="triangular2"),
            #'scheduler': CyclicLR(optimizer, base_lr=0.001, max_lr=0.1, step_size_up=steps_per_epoch, mode="exp_range", gamma=0.85),
            #'scheduler': CosineAnnealingLR(optimizer, T_max=200),
            'interval': 'step',
        }
        return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}
%%time

model = LitCifar10(lr=0.05, factor=0.8)
model.datamodule = cifar10_dm
 
trainer = pl.Trainer(
    gpus=1,
    max_epochs=150,
    auto_scale_batch_size=True,
    auto_lr_find = True,
    progress_bar_refresh_rate=100,
    logger=pl.loggers.TensorBoardLogger('tblogs/', name='resnext29_2x64d'),
    callbacks=[LearningRateMonitor(logging_interval='step')],
)
 
trainer.fit(model, cifar10_dm)
trainer.test(model, datamodule=cifar10_dm);
GPU available: True, used: True
TPU available: None, using: 0 TPU cores
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to /content/cifar-10-python.tar.gz
170500096/? [00:20<00:00, 33247174.37it/s]
Extracting /content/cifar-10-python.tar.gz to /content
Files already downloaded and verified

  | Name  | Type    | Params
----------------------------------
0 | model | ResNeXt | 9.1 M 
----------------------------------
9.1 M     Trainable params
0         Non-trainable params
9.1 M     Total params
36.515    Total estimated model params size (MB)
(...)
Epoch    23: reducing learning rate of group 0 to 4.0000e-02.
Epoch    40: reducing learning rate of group 0 to 3.2000e-02.
Epoch    50: reducing learning rate of group 0 to 2.5600e-02.
Epoch    62: reducing learning rate of group 0 to 2.0480e-02.
Epoch    68: reducing learning rate of group 0 to 1.6384e-02.
Epoch    76: reducing learning rate of group 0 to 1.3107e-02.
Epoch    83: reducing learning rate of group 0 to 1.0486e-02.
Epoch    89: reducing learning rate of group 0 to 8.3886e-03.
Epoch    97: reducing learning rate of group 0 to 6.7109e-03.
Epoch   110: reducing learning rate of group 0 to 5.3687e-03.
Epoch   128: reducing learning rate of group 0 to 4.2950e-03.
Epoch   134: reducing learning rate of group 0 to 3.4360e-03.
Epoch   140: reducing learning rate of group 0 to 2.7488e-03.
Epoch   146: reducing learning rate of group 0 to 2.1990e-03.
(...)
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.9379000067710876, 'test_loss': 0.20406362414360046}
--------------------------------------------------------------------------------
CPU times: user 2h 28min 40s, sys: 1h 10min 53s, total: 3h 39min 34s
Wall time: 3h 45min 5s

 

以上