PyTorch Lightning 1.1 : research: CIFAR10 (MobileNet)

PyTorch Lightning 1.1: research : CIFAR10 (MobileNet)
作成 : (株)クラスキャット セールスインフォメーション
作成日時 : 02/20/2021 (1.1.x)

* 本ページは、以下のリソースを参考にして遂行した実験結果のレポートです:

* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。

 

無料セミナー実施中 クラスキャット主催 人工知能 & ビジネス Web セミナー

人工知能とビジネスをテーマにウェビナー (WEB セミナー) を定期的に開催しています。スケジュールは弊社 公式 Web サイト でご確認頂けます。
  • お住まいの地域に関係なく Web ブラウザからご参加頂けます。事前登録 が必要ですのでご注意ください。
  • Windows PC のブラウザからご参加が可能です。スマートデバイスもご利用可能です。
クラスキャットは人工知能・テレワークに関する各種サービスを提供しております :

人工知能研究開発支援 人工知能研修サービス テレワーク & オンライン授業を支援
PoC(概念実証)を失敗させないための支援 (本支援はセミナーに参加しアンケートに回答した方を対象としています。)

お問合せ : 本件に関するお問い合わせ先は下記までお願いいたします。

株式会社クラスキャット セールス・マーケティング本部 セールス・インフォメーション
E-Mail:sales-info@classcat.com ; WebSite: https://www.classcat.com/
Facebook: https://www.facebook.com/ClassCatJP/

 

research: CIFAR10 (MobileNet)

結果

50 エポック : OneCycleLR

  • MobileNetV2 – {‘test_acc’: 0.8402000069618225, ‘test_loss’: 0.4621441066265106} – Wall time: 56min 25s

 
50 エポック : CyclicLR

  • MobileNetV2 – {‘test_acc’: 0.906499981880188, ‘test_loss’: 0.3456864356994629} – Wall time: 51min 54s

 
150 エポック : ReduceLROnPlateau

  • MobileNet – {‘test_acc’: 0.8924999833106995, ‘test_loss’: 0.4093822240829468} – Wall time: 2h 2min 19s (Tesla K80)
  • MobileNetV2 – {‘test_acc’: 0.9147999882698059, ‘test_loss’: 0.3481239378452301} – Wall time: 4h 39min 26s (Tesla K80)

 

コード

import torch
import torch.nn as nn
import torch.nn.functional as F


class Block(nn.Module):
    '''expand + depthwise + pointwise'''
    def __init__(self, in_planes, out_planes, expansion, stride):
        super(Block, self).__init__()
        self.stride = stride

        planes = expansion * in_planes
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=planes, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes)

        self.shortcut = nn.Sequential()
        if stride == 1 and in_planes != out_planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(out_planes),
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out = out + self.shortcut(x) if self.stride==1 else out
        return out


class MobileNetV2(nn.Module):
    # (expansion, out_planes, num_blocks, stride)
    cfg = [(1,  16, 1, 1),
           (6,  24, 2, 1),  # NOTE: change stride 2 -> 1 for CIFAR10
           (6,  32, 3, 2),
           (6,  64, 4, 2),
           (6,  96, 3, 1),
           (6, 160, 3, 2),
           (6, 320, 1, 1)]

    def __init__(self, num_classes=10):
        super(MobileNetV2, self).__init__()
        # NOTE: change conv1 stride 2 -> 1 for CIFAR10
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(32)
        self.layers = self._make_layers(in_planes=32)
        self.conv2 = nn.Conv2d(320, 1280, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn2 = nn.BatchNorm2d(1280)
        self.linear = nn.Linear(1280, num_classes)

    def _make_layers(self, in_planes):
        layers = []
        for expansion, out_planes, num_blocks, stride in self.cfg:
            strides = [stride] + [1]*(num_blocks-1)
            for stride in strides:
                layers.append(Block(in_planes, out_planes, expansion, stride))
                in_planes = out_planes
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layers(out)
        out = F.relu(self.bn2(self.conv2(out)))
        # NOTE: change pooling kernel_size 7 -> 4 for CIFAR10
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out
net = MobileNetV2()
print(net)
x = torch.randn(2,3,32,32)
y = net(x)
print(y.size())
MobileNetV2(
  (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layers): Sequential(
    (0): Block(
      (conv1): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Block(
      (conv1): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=96, bias=False)
      (bn2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(16, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (2): Block(
      (conv1): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144, bias=False)
      (bn2): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (3): Block(
      (conv1): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(144, 144, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=144, bias=False)
      (bn2): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(144, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (4): Block(
      (conv1): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
      (bn2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (5): Block(
      (conv1): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
      (bn2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (6): Block(
      (conv1): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)
      (bn2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (7): Block(
      (conv1): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
      (bn2): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (8): Block(
      (conv1): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
      (bn2): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (9): Block(
      (conv1): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
      (bn2): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (10): Block(
      (conv1): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
      (bn2): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(64, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (11): Block(
      (conv1): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)
      (bn2): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (12): Block(
      (conv1): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)
      (bn2): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (13): Block(
      (conv1): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(576, 576, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=576, bias=False)
      (bn2): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (14): Block(
      (conv1): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)
      (bn2): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (15): Block(
      (conv1): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)
      (bn2): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential()
    )
    (16): Block(
      (conv1): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)
      (bn2): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (shortcut): Sequential(
        (0): Conv2d(160, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
  )
  (conv2): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn2): BatchNorm2d(1280, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (linear): Linear(in_features=1280, out_features=10, bias=True)
)
torch.Size([2, 10])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device
device(type='cuda')
from torchsummary import summary

summary(MobileNetV2().to('cuda'), (3, 32, 32))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 32, 32, 32]             864
       BatchNorm2d-2           [-1, 32, 32, 32]              64
            Conv2d-3           [-1, 32, 32, 32]           1,024
       BatchNorm2d-4           [-1, 32, 32, 32]              64
            Conv2d-5           [-1, 32, 32, 32]             288
       BatchNorm2d-6           [-1, 32, 32, 32]              64
            Conv2d-7           [-1, 16, 32, 32]             512
       BatchNorm2d-8           [-1, 16, 32, 32]              32
            Conv2d-9           [-1, 16, 32, 32]             512
      BatchNorm2d-10           [-1, 16, 32, 32]              32
            Block-11           [-1, 16, 32, 32]               0
           Conv2d-12           [-1, 96, 32, 32]           1,536
      BatchNorm2d-13           [-1, 96, 32, 32]             192
           Conv2d-14           [-1, 96, 32, 32]             864
      BatchNorm2d-15           [-1, 96, 32, 32]             192
           Conv2d-16           [-1, 24, 32, 32]           2,304
      BatchNorm2d-17           [-1, 24, 32, 32]              48
           Conv2d-18           [-1, 24, 32, 32]             384
      BatchNorm2d-19           [-1, 24, 32, 32]              48
            Block-20           [-1, 24, 32, 32]               0
           Conv2d-21          [-1, 144, 32, 32]           3,456
      BatchNorm2d-22          [-1, 144, 32, 32]             288
           Conv2d-23          [-1, 144, 32, 32]           1,296
      BatchNorm2d-24          [-1, 144, 32, 32]             288
           Conv2d-25           [-1, 24, 32, 32]           3,456
      BatchNorm2d-26           [-1, 24, 32, 32]              48
            Block-27           [-1, 24, 32, 32]               0
           Conv2d-28          [-1, 144, 32, 32]           3,456
      BatchNorm2d-29          [-1, 144, 32, 32]             288
           Conv2d-30          [-1, 144, 16, 16]           1,296
      BatchNorm2d-31          [-1, 144, 16, 16]             288
           Conv2d-32           [-1, 32, 16, 16]           4,608
      BatchNorm2d-33           [-1, 32, 16, 16]              64
            Block-34           [-1, 32, 16, 16]               0
           Conv2d-35          [-1, 192, 16, 16]           6,144
      BatchNorm2d-36          [-1, 192, 16, 16]             384
           Conv2d-37          [-1, 192, 16, 16]           1,728
      BatchNorm2d-38          [-1, 192, 16, 16]             384
           Conv2d-39           [-1, 32, 16, 16]           6,144
      BatchNorm2d-40           [-1, 32, 16, 16]              64
            Block-41           [-1, 32, 16, 16]               0
           Conv2d-42          [-1, 192, 16, 16]           6,144
      BatchNorm2d-43          [-1, 192, 16, 16]             384
           Conv2d-44          [-1, 192, 16, 16]           1,728
      BatchNorm2d-45          [-1, 192, 16, 16]             384
           Conv2d-46           [-1, 32, 16, 16]           6,144
      BatchNorm2d-47           [-1, 32, 16, 16]              64
            Block-48           [-1, 32, 16, 16]               0
           Conv2d-49          [-1, 192, 16, 16]           6,144
      BatchNorm2d-50          [-1, 192, 16, 16]             384
           Conv2d-51            [-1, 192, 8, 8]           1,728
      BatchNorm2d-52            [-1, 192, 8, 8]             384
           Conv2d-53             [-1, 64, 8, 8]          12,288
      BatchNorm2d-54             [-1, 64, 8, 8]             128
            Block-55             [-1, 64, 8, 8]               0
           Conv2d-56            [-1, 384, 8, 8]          24,576
      BatchNorm2d-57            [-1, 384, 8, 8]             768
           Conv2d-58            [-1, 384, 8, 8]           3,456
      BatchNorm2d-59            [-1, 384, 8, 8]             768
           Conv2d-60             [-1, 64, 8, 8]          24,576
      BatchNorm2d-61             [-1, 64, 8, 8]             128
            Block-62             [-1, 64, 8, 8]               0
           Conv2d-63            [-1, 384, 8, 8]          24,576
      BatchNorm2d-64            [-1, 384, 8, 8]             768
           Conv2d-65            [-1, 384, 8, 8]           3,456
      BatchNorm2d-66            [-1, 384, 8, 8]             768
           Conv2d-67             [-1, 64, 8, 8]          24,576
      BatchNorm2d-68             [-1, 64, 8, 8]             128
            Block-69             [-1, 64, 8, 8]               0
           Conv2d-70            [-1, 384, 8, 8]          24,576
      BatchNorm2d-71            [-1, 384, 8, 8]             768
           Conv2d-72            [-1, 384, 8, 8]           3,456
      BatchNorm2d-73            [-1, 384, 8, 8]             768
           Conv2d-74             [-1, 64, 8, 8]          24,576
      BatchNorm2d-75             [-1, 64, 8, 8]             128
            Block-76             [-1, 64, 8, 8]               0
           Conv2d-77            [-1, 384, 8, 8]          24,576
      BatchNorm2d-78            [-1, 384, 8, 8]             768
           Conv2d-79            [-1, 384, 8, 8]           3,456
      BatchNorm2d-80            [-1, 384, 8, 8]             768
           Conv2d-81             [-1, 96, 8, 8]          36,864
      BatchNorm2d-82             [-1, 96, 8, 8]             192
           Conv2d-83             [-1, 96, 8, 8]           6,144
      BatchNorm2d-84             [-1, 96, 8, 8]             192
            Block-85             [-1, 96, 8, 8]               0
           Conv2d-86            [-1, 576, 8, 8]          55,296
      BatchNorm2d-87            [-1, 576, 8, 8]           1,152
           Conv2d-88            [-1, 576, 8, 8]           5,184
      BatchNorm2d-89            [-1, 576, 8, 8]           1,152
           Conv2d-90             [-1, 96, 8, 8]          55,296
      BatchNorm2d-91             [-1, 96, 8, 8]             192
            Block-92             [-1, 96, 8, 8]               0
           Conv2d-93            [-1, 576, 8, 8]          55,296
      BatchNorm2d-94            [-1, 576, 8, 8]           1,152
           Conv2d-95            [-1, 576, 8, 8]           5,184
      BatchNorm2d-96            [-1, 576, 8, 8]           1,152
           Conv2d-97             [-1, 96, 8, 8]          55,296
      BatchNorm2d-98             [-1, 96, 8, 8]             192
            Block-99             [-1, 96, 8, 8]               0
          Conv2d-100            [-1, 576, 8, 8]          55,296
     BatchNorm2d-101            [-1, 576, 8, 8]           1,152
          Conv2d-102            [-1, 576, 4, 4]           5,184
     BatchNorm2d-103            [-1, 576, 4, 4]           1,152
          Conv2d-104            [-1, 160, 4, 4]          92,160
     BatchNorm2d-105            [-1, 160, 4, 4]             320
           Block-106            [-1, 160, 4, 4]               0
          Conv2d-107            [-1, 960, 4, 4]         153,600
     BatchNorm2d-108            [-1, 960, 4, 4]           1,920
          Conv2d-109            [-1, 960, 4, 4]           8,640
     BatchNorm2d-110            [-1, 960, 4, 4]           1,920
          Conv2d-111            [-1, 160, 4, 4]         153,600
     BatchNorm2d-112            [-1, 160, 4, 4]             320
           Block-113            [-1, 160, 4, 4]               0
          Conv2d-114            [-1, 960, 4, 4]         153,600
     BatchNorm2d-115            [-1, 960, 4, 4]           1,920
          Conv2d-116            [-1, 960, 4, 4]           8,640
     BatchNorm2d-117            [-1, 960, 4, 4]           1,920
          Conv2d-118            [-1, 160, 4, 4]         153,600
     BatchNorm2d-119            [-1, 160, 4, 4]             320
           Block-120            [-1, 160, 4, 4]               0
          Conv2d-121            [-1, 960, 4, 4]         153,600
     BatchNorm2d-122            [-1, 960, 4, 4]           1,920
          Conv2d-123            [-1, 960, 4, 4]           8,640
     BatchNorm2d-124            [-1, 960, 4, 4]           1,920
          Conv2d-125            [-1, 320, 4, 4]         307,200
     BatchNorm2d-126            [-1, 320, 4, 4]             640
          Conv2d-127            [-1, 320, 4, 4]          51,200
     BatchNorm2d-128            [-1, 320, 4, 4]             640
           Block-129            [-1, 320, 4, 4]               0
          Conv2d-130           [-1, 1280, 4, 4]         409,600
     BatchNorm2d-131           [-1, 1280, 4, 4]           2,560
          Linear-132                   [-1, 10]          12,810
================================================================
Total params: 2,296,922
Trainable params: 2,296,922
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 27.37
Params size (MB): 8.76
Estimated Total Size (MB): 36.14
----------------------------------------------------------------
! pip install pytorch-lightning pytorch-lightning-bolts -qU
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import OneCycleLR, CyclicLR, ExponentialLR, CosineAnnealingLR
from torch.optim.swa_utils import AveragedModel, update_bn
import torchvision
 
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, GPUStatsMonitor, EarlyStopping
from pytorch_lightning.metrics.functional import accuracy
from pl_bolts.datamodules import CIFAR10DataModule
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
pl.seed_everything(7);
Global seed set to 7
batch_size = 32
 
train_transforms = torchvision.transforms.Compose([
    torchvision.transforms.RandomCrop(32, padding=4),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    cifar10_normalization(),
])
 
test_transforms = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    cifar10_normalization(),
])
 
cifar10_dm = CIFAR10DataModule(
    batch_size=batch_size,
    train_transforms=train_transforms,
    test_transforms=test_transforms,
    val_transforms=test_transforms,
)

 

OneCycleLR

class LitCifar10MobileNetV2(pl.LightningModule):
    def __init__(self, lr=0.05):
        super().__init__()
 
        self.save_hyperparameters()
        self.model = MobileNetV2()

    def forward(self, x):
        out = self.model(x)
        return F.log_softmax(out, dim=1)
 
    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = F.log_softmax(self.model(x), dim=1)
        loss = F.nll_loss(logits, y)
        self.log('train_loss', loss)
        return loss
 
    def evaluate(self, batch, stage=None):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y)
 
        if stage:
            self.log(f'{stage}_loss', loss, prog_bar=True)
            self.log(f'{stage}_acc', acc, prog_bar=True)
 
    def validation_step(self, batch, batch_idx):
        self.evaluate(batch, 'val')
 
    def test_step(self, batch, batch_idx):
        self.evaluate(batch, 'test')
 
    def xconfigure_optimizers(self):
        optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9)
        #optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
        scheduler_dict = {
          'scheduler': CyclicLR(optimizer, base_lr=0.001, max_lr=0.1,step_size_up=5, mode="triangular2"),
          'interval': 'step',
        }
        return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}

    def configure_optimizers(self):
        print("###")
        print(self.hparams)
        optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
        steps_per_epoch = 45000 // batch_size
        scheduler_dict = {
            #'scheduler': ExponentialLR(optimizer, gamma=0.1),
            #'interval': 'epoch',
            'scheduler': OneCycleLR(optimizer, max_lr=0.1, pct_start=0.1, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch),
            #'scheduler': OneCycleLR(optimizer, max_lr=0.1, pct_start=0.25, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch),
            'interval': 'step',
        }
        return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}
%%time

model = LitCifar10MobileNetV2(lr=0.05)
model.datamodule = cifar10_dm

lr_monitor = LearningRateMonitor(logging_interval='step')
gpu_stats = GPUStatsMonitor() 
#early_stopping = EarlyStopping(monitor='val_loss', patience=3)
 
trainer = pl.Trainer(
    gpus=1,
    max_epochs=50,
    #auto_scale_batch_size=True,
    #auto_lr_find = True,
    progress_bar_refresh_rate=50,
    logger=pl.loggers.TensorBoardLogger('lightning_logs/', name='mobilenet2'),
    callbacks=[lr_monitor, gpu_stats],
)
 
trainer.fit(model, cifar10_dm)
trainer.test(model, datamodule=cifar10_dm);
GPU available: True, used: True
TPU available: None, using: 0 TPU cores

  | Name  | Type        | Params
--------------------------------------
0 | model | MobileNetV2 | 2.3 M 
--------------------------------------
2.3 M     Trainable params
0         Non-trainable params
2.3 M     Total params
9.188     Total estimated model params size (MB)
...
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.8402000069618225, 'test_loss': 0.4621441066265106}
--------------------------------------------------------------------------------
CPU times: user 47min 20s, sys: 4min 17s, total: 51min 37s
Wall time: 56min 25s
# Start tensorboard. 
%reload_ext tensorboard
%tensorboard --logdir lightning_logs/



 

CyclicLR

class LitCifar10MobileNetV2(pl.LightningModule):
    def __init__(self, lr=0.05):
        super().__init__()
 
        self.save_hyperparameters()
        self.model = MobileNetV2()

    def forward(self, x):
        out = self.model(x)
        return F.log_softmax(out, dim=1)
 
    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = F.log_softmax(self.model(x), dim=1)
        loss = F.nll_loss(logits, y)
        self.log('train_loss', loss)
        return loss
 
    def evaluate(self, batch, stage=None):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y)
 
        if stage:
            self.log(f'{stage}_loss', loss, prog_bar=True)
            self.log(f'{stage}_acc', acc, prog_bar=True)
 
    def validation_step(self, batch, batch_idx):
        self.evaluate(batch, 'val')
 
    def test_step(self, batch, batch_idx):
        self.evaluate(batch, 'test')

    def configure_optimizers(self):
        #print("###")
        #print(self.hparams)
        #optimizer = torch.optim.RMSprop(self.parameters(), lr=self.hparams.lr, momentum=0.9)
        #optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.lr)
        optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
        steps_per_epoch = 45000 // batch_size
        scheduler_dict = {
            #'scheduler': ExponentialLR(optimizer, gamma=0.1),
            #'interval': 'epoch',
            #'scheduler': OneCycleLR(optimizer, max_lr=0.05, pct_start=0.25, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch),
            #'#scheduler': CyclicLR(optimizer, base_lr=0.0001, max_lr=0.05,step_size_up=steps_per_epoch*2,mode="triangular2"),
            'scheduler': CyclicLR(optimizer, base_lr=0.0001, max_lr=0.1, step_size_up=steps_per_epoch*2, mode="triangular2"),
            #'scheduler': CosineAnnealingLR(optimizer, T_max=200),
            'interval': 'step',
        }
        return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}
%%time

model = LitCifar10MobileNetV2(lr=0.05)
model.datamodule = cifar10_dm

lr_monitor = LearningRateMonitor(logging_interval='step')
#gpu_stats = GPUStatsMonitor() 
#early_stopping = EarlyStopping(monitor='val_loss', patience=3)
 
trainer = pl.Trainer(
    gpus=1,
    max_epochs=50,
    #auto_scale_batch_size=True,
    #auto_lr_find = True,
    progress_bar_refresh_rate=50,
    logger=pl.loggers.TensorBoardLogger('lightning_logs/', name='mobilenet2'),
    callbacks=[lr_monitor],
    # deterministic=True
)
 
trainer.fit(model, cifar10_dm)
trainer.test(model, datamodule=cifar10_dm);
GPU available: True, used: True
TPU available: None, using: 0 TPU cores

  | Name  | Type        | Params
--------------------------------------
0 | model | MobileNetV2 | 2.3 M 
--------------------------------------
2.3 M     Trainable params
0         Non-trainable params
2.3 M     Total params
9.188     Total estimated model params size (MB)
...
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.906499981880188, 'test_loss': 0.3456864356994629}
--------------------------------------------------------------------------------
CPU times: user 46min 57s, sys: 2min 25s, total: 49min 23s
Wall time: 51min 54s

 

batch_size = 50
 
train_transforms = torchvision.transforms.Compose([
    torchvision.transforms.RandomCrop(32, padding=4),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    cifar10_normalization(),
])
 
test_transforms = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    cifar10_normalization(),
])
 
cifar10_dm = CIFAR10DataModule(
    batch_size=batch_size,
    train_transforms=train_transforms,
    test_transforms=test_transforms,
    val_transforms=test_transforms,
)
class LitCifar10(pl.LightningModule):
    def __init__(self, lr=0.05):
        super().__init__()
 
        self.save_hyperparameters()
        self.model = MobileNet()

    def forward(self, x):
        out = self.model(x)
        return F.log_softmax(out, dim=1)
 
    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = F.log_softmax(self.model(x), dim=1)
        loss = F.nll_loss(logits, y)
        self.log('train_loss', loss)
        return loss
 
    def evaluate(self, batch, stage=None):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y)
 
        if stage:
            self.log(f'{stage}_loss', loss, prog_bar=True)
            self.log(f'{stage}_acc', acc, prog_bar=True)
 
    def validation_step(self, batch, batch_idx):
        self.evaluate(batch, 'val')
 
    def test_step(self, batch, batch_idx):
        self.evaluate(batch, 'test')
 
    def configure_optimizers(self):
        if False:
            optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr, weight_decay=0, eps=1e-3)
        else:
            optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)

        return {
          'optimizer': optimizer,
          'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=4, factor=0.8, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5),
          'monitor': 'val_acc'
        }

    def xconfigure_optimizers(self):
        #print("###")
        #print(self.hparams)
        optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
        steps_per_epoch = 45000 // batch_size
        scheduler_dict = {
            #'scheduler': ExponentialLR(optimizer, gamma=0.1),
            #'interval': 'epoch',
            'scheduler': OneCycleLR(optimizer, max_lr=0.1, pct_start=0.2, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch),
            #'scheduler': CyclicLR(optimizer, base_lr=0.001, max_lr=0.1, step_size_up=steps_per_epoch*2, mode="triangular2"),
            #'scheduler': CyclicLR(optimizer, base_lr=0.001, max_lr=0.1, step_size_up=steps_per_epoch, mode="exp_range", gamma=0.85),
            #'scheduler': CosineAnnealingLR(optimizer, T_max=200),
            'interval': 'step',
        }
        return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}
%%time

model = LitCifar10(lr=0.05)
model.datamodule = cifar10_dm
 
trainer = pl.Trainer(
    gpus=1,
    max_epochs=150,
    auto_scale_batch_size=True,
    auto_lr_find = True,
    progress_bar_refresh_rate=100,
    logger=pl.loggers.TensorBoardLogger('tblogs/', name='mobilenet'),
    callbacks=[LearningRateMonitor(logging_interval='step')],
)
 
trainer.fit(model, cifar10_dm)
trainer.test(model, datamodule=cifar10_dm);
GPU available: True, used: True
TPU available: None, using: 0 TPU cores
Files already downloaded and verified
Files already downloaded and verified

  | Name  | Type      | Params
------------------------------------
0 | model | MobileNet | 3.2 M 
------------------------------------
3.2 M     Trainable params
0         Non-trainable params
3.2 M     Total params
12.869    Total estimated model params size (MB)
(...)
Epoch    11: reducing learning rate of group 0 to 4.0000e-02.
Epoch    19: reducing learning rate of group 0 to 3.2000e-02.
Epoch    29: reducing learning rate of group 0 to 2.5600e-02.
Epoch    37: reducing learning rate of group 0 to 2.0480e-02.
Epoch    51: reducing learning rate of group 0 to 1.6384e-02.
Epoch    58: reducing learning rate of group 0 to 1.3107e-02.
Epoch    69: reducing learning rate of group 0 to 1.0486e-02.
Epoch    79: reducing learning rate of group 0 to 8.3886e-03.
Epoch    88: reducing learning rate of group 0 to 6.7109e-03.
Epoch    95: reducing learning rate of group 0 to 5.3687e-03.
Epoch   102: reducing learning rate of group 0 to 4.2950e-03.
Epoch   117: reducing learning rate of group 0 to 3.4360e-03.
Epoch   124: reducing learning rate of group 0 to 2.7488e-03.
Epoch   132: reducing learning rate of group 0 to 2.1990e-03.
Epoch   138: reducing learning rate of group 0 to 1.7592e-03.
Epoch   144: reducing learning rate of group 0 to 1.4074e-03.

--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.8924999833106995, 'test_loss': 0.4093822240829468}
--------------------------------------------------------------------------------
CPU times: user 1h 45min 54s, sys: 14min 37s, total: 2h 31s
Wall time: 2h 2min 19s
class LitCifar10(pl.LightningModule):
    def __init__(self, lr=0.05):
        super().__init__()
 
        self.save_hyperparameters()
        self.model = MobileNetV2()

    def forward(self, x):
        out = self.model(x)
        return F.log_softmax(out, dim=1)
 
    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = F.log_softmax(self.model(x), dim=1)
        loss = F.nll_loss(logits, y)
        self.log('train_loss', loss)
        return loss
 
    def evaluate(self, batch, stage=None):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y)
 
        if stage:
            self.log(f'{stage}_loss', loss, prog_bar=True)
            self.log(f'{stage}_acc', acc, prog_bar=True)
 
    def validation_step(self, batch, batch_idx):
        self.evaluate(batch, 'val')
 
    def test_step(self, batch, batch_idx):
        self.evaluate(batch, 'test')
 
    def configure_optimizers(self):
        if False:
            optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr, weight_decay=0, eps=1e-3)
        else:
            optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)

        return {
          'optimizer': optimizer,
          'lr_scheduler': ReduceLROnPlateau(optimizer, 'max', patience=4, factor=0.8, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1, min_lr=1e-5),
          'monitor': 'val_acc'
        }

    def xconfigure_optimizers(self):
        #print("###")
        #print(self.hparams)
        optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)
        steps_per_epoch = 45000 // batch_size
        scheduler_dict = {
            #'scheduler': ExponentialLR(optimizer, gamma=0.1),
            #'interval': 'epoch',
            'scheduler': OneCycleLR(optimizer, max_lr=0.1, pct_start=0.2, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch),
            #'scheduler': CyclicLR(optimizer, base_lr=0.001, max_lr=0.1, step_size_up=steps_per_epoch*2, mode="triangular2"),
            #'scheduler': CyclicLR(optimizer, base_lr=0.001, max_lr=0.1, step_size_up=steps_per_epoch, mode="exp_range", gamma=0.85),
            #'scheduler': CosineAnnealingLR(optimizer, T_max=200),
            'interval': 'step',
        }
        return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}
%%time

model = LitCifar10(lr=0.05)
model.datamodule = cifar10_dm
 
trainer = pl.Trainer(
    gpus=1,
    max_epochs=150,
    auto_scale_batch_size=True,
    auto_lr_find = True,
    progress_bar_refresh_rate=100,
    logger=pl.loggers.TensorBoardLogger('tblogs/', name='mobilenet2'),
    callbacks=[LearningRateMonitor(logging_interval='step')],
)
 
trainer.fit(model, cifar10_dm)
trainer.test(model, datamodule=cifar10_dm);
GPU available: True, used: True
TPU available: None, using: 0 TPU cores
Files already downloaded and verified
Files already downloaded and verified

  | Name  | Type        | Params
--------------------------------------
0 | model | MobileNetV2 | 2.3 M 
--------------------------------------
2.3 M     Trainable params
0         Non-trainable params
2.3 M     Total params
9.188     Total estimated model params size (MB)
(...)
Epoch    16: reducing learning rate of group 0 to 4.0000e-02.
Epoch    29: reducing learning rate of group 0 to 3.2000e-02.
Epoch    39: reducing learning rate of group 0 to 2.5600e-02.
Epoch    45: reducing learning rate of group 0 to 2.0480e-02.
Epoch    51: reducing learning rate of group 0 to 1.6384e-02.
Epoch    60: reducing learning rate of group 0 to 1.3107e-02.
Epoch    69: reducing learning rate of group 0 to 1.0486e-02.
Epoch    79: reducing learning rate of group 0 to 8.3886e-03.
Epoch    85: reducing learning rate of group 0 to 6.7109e-03.
Epoch    96: reducing learning rate of group 0 to 5.3687e-03.
Epoch   102: reducing learning rate of group 0 to 4.2950e-03.
Epoch   113: reducing learning rate of group 0 to 3.4360e-03.
Epoch   119: reducing learning rate of group 0 to 2.7488e-03.
Epoch   128: reducing learning rate of group 0 to 2.1990e-03.
Epoch   135: reducing learning rate of group 0 to 1.7592e-03.
Epoch   143: reducing learning rate of group 0 to 1.4074e-03.
Epoch   149: reducing learning rate of group 0 to 1.1259e-03.
(...)
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{'test_acc': 0.9147999882698059, 'test_loss': 0.3481239378452301}
--------------------------------------------------------------------------------
CPU times: user 3h 55min 40s, sys: 41min 56s, total: 4h 37min 36s
Wall time: 4h 39min 26s





 

以上