Keras : Vision models サンプル: mnist_cnn.py

Keras : Vision models サンプル: mnist_cnn.py

MNIST データセット上で単純な ConvNet をトレーニングします。
12 エポック後に 99.25 % テスト精度を得ます。50 エポック後では 99.21 % テスト精度でした。

from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
batch_size = 128
num_classes = 10
epochs = 50
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.summary()
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 26, 26, 32)        320       
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 24, 24, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 12, 12, 64)        0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 12, 12, 64)        0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 9216)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 128)               1179776   
_________________________________________________________________
dropout_2 (Dropout)          (None, 128)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 10)                1290      
=================================================================
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0
model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])
model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test))
Train on 60000 samples, validate on 10000 samples
Epoch 1/50
60000/60000 [==============================] - 14s 240us/step - loss: 0.3250 - acc: 0.9003 - val_loss: 0.0804 - val_acc: 0.9745
Epoch 2/50
60000/60000 [==============================] - 10s 174us/step - loss: 0.1135 - acc: 0.9660 - val_loss: 0.0538 - val_acc: 0.9823
Epoch 3/50
60000/60000 [==============================] - 10s 174us/step - loss: 0.0851 - acc: 0.9739 - val_loss: 0.0432 - val_acc: 0.9858
Epoch 4/50
60000/60000 [==============================] - 10s 174us/step - loss: 0.0721 - acc: 0.9785 - val_loss: 0.0400 - val_acc: 0.9865
Epoch 5/50
60000/60000 [==============================] - 10s 174us/step - loss: 0.0627 - acc: 0.9812 - val_loss: 0.0367 - val_acc: 0.9874
Epoch 6/50
60000/60000 [==============================] - 10s 174us/step - loss: 0.0552 - acc: 0.9834 - val_loss: 0.0331 - val_acc: 0.9892
Epoch 7/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0519 - acc: 0.9850 - val_loss: 0.0315 - val_acc: 0.9889
Epoch 8/50
60000/60000 [==============================] - 10s 174us/step - loss: 0.0472 - acc: 0.9860 - val_loss: 0.0287 - val_acc: 0.9904
Epoch 9/50
60000/60000 [==============================] - 10s 174us/step - loss: 0.0454 - acc: 0.9867 - val_loss: 0.0299 - val_acc: 0.9899
Epoch 10/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0410 - acc: 0.9877 - val_loss: 0.0294 - val_acc: 0.9895
Epoch 11/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0383 - acc: 0.9888 - val_loss: 0.0286 - val_acc: 0.9901
Epoch 12/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0378 - acc: 0.9880 - val_loss: 0.0284 - val_acc: 0.9907
Epoch 13/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0361 - acc: 0.9892 - val_loss: 0.0278 - val_acc: 0.9912
Epoch 14/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0338 - acc: 0.9903 - val_loss: 0.0267 - val_acc: 0.9915
Epoch 15/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0333 - acc: 0.9899 - val_loss: 0.0274 - val_acc: 0.9911
Epoch 16/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0331 - acc: 0.9899 - val_loss: 0.0304 - val_acc: 0.9903
Epoch 17/50
60000/60000 [==============================] - 10s 174us/step - loss: 0.0309 - acc: 0.9904 - val_loss: 0.0263 - val_acc: 0.9920
Epoch 18/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0306 - acc: 0.9911 - val_loss: 0.0321 - val_acc: 0.9905
Epoch 19/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0309 - acc: 0.9909 - val_loss: 0.0295 - val_acc: 0.9908
Epoch 20/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0291 - acc: 0.9914 - val_loss: 0.0303 - val_acc: 0.9901
Epoch 21/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0288 - acc: 0.9913 - val_loss: 0.0280 - val_acc: 0.9909
Epoch 22/50
60000/60000 [==============================] - 10s 174us/step - loss: 0.0292 - acc: 0.9913 - val_loss: 0.0291 - val_acc: 0.9915
Epoch 23/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0277 - acc: 0.9920 - val_loss: 0.0304 - val_acc: 0.9906
Epoch 24/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0289 - acc: 0.9915 - val_loss: 0.0268 - val_acc: 0.9919
Epoch 25/50
60000/60000 [==============================] - 10s 174us/step - loss: 0.0290 - acc: 0.9915 - val_loss: 0.0282 - val_acc: 0.9910
Epoch 26/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0278 - acc: 0.9914 - val_loss: 0.0272 - val_acc: 0.9920
Epoch 27/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0270 - acc: 0.9921 - val_loss: 0.0282 - val_acc: 0.9915
Epoch 28/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0266 - acc: 0.9923 - val_loss: 0.0290 - val_acc: 0.9919
Epoch 29/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0267 - acc: 0.9919 - val_loss: 0.0321 - val_acc: 0.9894
Epoch 30/50
60000/60000 [==============================] - 10s 174us/step - loss: 0.0278 - acc: 0.9919 - val_loss: 0.0259 - val_acc: 0.9921
Epoch 31/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0270 - acc: 0.9917 - val_loss: 0.0306 - val_acc: 0.9912
Epoch 32/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0271 - acc: 0.9922 - val_loss: 0.0312 - val_acc: 0.9908
Epoch 33/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0262 - acc: 0.9922 - val_loss: 0.0306 - val_acc: 0.9918
Epoch 34/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0266 - acc: 0.9921 - val_loss: 0.0330 - val_acc: 0.9908
Epoch 35/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0269 - acc: 0.9917 - val_loss: 0.0295 - val_acc: 0.9919
Epoch 36/50
60000/60000 [==============================] - 10s 172us/step - loss: 0.0264 - acc: 0.9920 - val_loss: 0.0286 - val_acc: 0.9913
Epoch 37/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0285 - acc: 0.9916 - val_loss: 0.0302 - val_acc: 0.9909
Epoch 38/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0266 - acc: 0.9921 - val_loss: 0.0307 - val_acc: 0.9914
Epoch 39/50
60000/60000 [==============================] - 10s 172us/step - loss: 0.0270 - acc: 0.9922 - val_loss: 0.0293 - val_acc: 0.9919
Epoch 40/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0262 - acc: 0.9921 - val_loss: 0.0313 - val_acc: 0.9917
Epoch 41/50
60000/60000 [==============================] - 10s 172us/step - loss: 0.0259 - acc: 0.9922 - val_loss: 0.0307 - val_acc: 0.9909
Epoch 42/50
60000/60000 [==============================] - 10s 172us/step - loss: 0.0271 - acc: 0.9920 - val_loss: 0.0330 - val_acc: 0.9910
Epoch 43/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0266 - acc: 0.9923 - val_loss: 0.0327 - val_acc: 0.9913
Epoch 44/50
60000/60000 [==============================] - 10s 172us/step - loss: 0.0285 - acc: 0.9917 - val_loss: 0.0299 - val_acc: 0.9917
Epoch 45/50
60000/60000 [==============================] - 10s 172us/step - loss: 0.0254 - acc: 0.9928 - val_loss: 0.0301 - val_acc: 0.9910
Epoch 46/50
60000/60000 [==============================] - 10s 172us/step - loss: 0.0254 - acc: 0.9923 - val_loss: 0.0292 - val_acc: 0.9914
Epoch 47/50
60000/60000 [==============================] - 10s 172us/step - loss: 0.0273 - acc: 0.9923 - val_loss: 0.0327 - val_acc: 0.9912
Epoch 48/50
60000/60000 [==============================] - 10s 172us/step - loss: 0.0276 - acc: 0.9919 - val_loss: 0.0319 - val_acc: 0.9914
Epoch 49/50
60000/60000 [==============================] - 10s 172us/step - loss: 0.0255 - acc: 0.9925 - val_loss: 0.0325 - val_acc: 0.9911
Epoch 50/50
60000/60000 [==============================] - 10s 173us/step - loss: 0.0255 - acc: 0.9924 - val_loss: 0.0296 - val_acc: 0.9921
CPU times: user 8min 3s, sys: 50.4 s, total: 8min 53s
Wall time: 8min 43s
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.0296470036264
Test accuracy: 0.9921
 

以上