PyTorch 1.1 Tutorials : テキスト : チャットボット (翻訳/解説)
翻訳 : (株)クラスキャット セールスインフォメーション
作成日時 : 07/23/2019 (1.1.0)
* 本ページは、PyTorch 1.1 Tutorials : Text : CHATBOT TUTORIAL を翻訳した上で適宜、補足説明したものです:
* サンプルコードの動作確認はしておりますが、必要な場合には適宜、追加改変しています。
* ご自由にリンクを張って頂いてかまいませんが、sales-info@classcat.com までご一報いただけると嬉しいです。
Tutorials : テキスト : チャットボット
このチュートリアルでは、リカレント sequence-to-sequence モデルの楽しい興味深いユースケースを探検します。Cornell Movie-Dialogs コーパス から映画スクリプトを使用して単純なチャットボットを訓練します。
対話モデルは人工知能研究のホットなトピックです。チャットボットはカスタマーサービス・アプリケーションとオンライン・ヘルプデスクを含む様々な環境で見つかります。これらのボットはしばしば retrieval-based モデルにより供給されます、これはある形式の質問へ事前定義された応答を出力します。会社の IT ヘルプデスクのように非常に制限されたドメインでは、これらのモデルは十分かもしれません、けれども、それらはより一般的なユースケースでは十分に強固ではありません。マルチドメインで人間と意味がある会話を成すことを機械に教えることは解決からは程遠いリサーチ・クエスチョンです。最近では、深層学習ブームが Google の Neural Conversational モデル のようなパワフルな生成モデルを可能にしています、これはマルチドメイン生成対話モデルに対して大きな一歩を踏み出しています。このチュートリアルでは、この種類のモデルを PyTorch で実装します。
> hello? Bot: hello . > where am I? Bot: you re in a hospital . > who are you? Bot: i m a lawyer . > how are you doing? Bot: i m fine . > are you my friend? Bot: no . > you're under arrest Bot: i m trying to help you ! > i'm just kidding Bot: i m sorry . > where are you from? Bot: san francisco . > it's time for me to leave Bot: i know . > goodbye Bot: goodbye .
チュートリアルのハイライト
- Cornell Movie-Dialogs コーパス データセットのロードと前処理を扱う
- Luong attention メカニズム で sequence-to-sequence モデルを実装する。
- ミニバッチを使用してエンコーダとデコーダ・モデルを一緒に訓練する。
- greedy-search デコーディング・モジュールを実装する。
- 訓練されたチャットボットと相互作用する。
Acknowledgements
このチュートリアルは次のソースからコードを拝借しています :
- Yuan-Kuei Wu の pytorch-chatbot 実装: https://github.com/ywk991112/pytorch-chatbot
- Sean Robertson の practical-pytorch seq2seq-translation サンプル: https://github.com/spro/practical-pytorch/tree/master/seq2seq-translation
- FloydHub の Cornell Movie Corpus 前処理コード: https://github.com/floydhub/textutil-preprocess-cornell-movie-corpus
準備
始まるために、データ ZIP ファイルを ここ でダウンロードして現在のディレクトリ下の data/ ディレクトリに起きます。
その後、幾つかの必要なものをインポートします。
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import torch from torch.jit import script, trace import torch.nn as nn from torch import optim import torch.nn.functional as F import csv import random import re import os import unicodedata import codecs from io import open import itertools import math USE_CUDA = torch.cuda.is_available() device = torch.device("cuda" if USE_CUDA else "cpu")
データのロード & 前処理
次のステップはデータファイルを再フォーマットしてデータを作業可能な構造内にロードすることです。
Cornell Movie-Dialogs コーパス は映画キャラクターの対話の豊富なデータセットです :
- 映画キャラクターの 10,292 ペアの間の 220,579 会話交換
- 617 映画から 9,035 キャラクター
- 304,713 総計発話
データセットは巨大で多様です、そして言語形式、期間、センチメント等の素晴らしい変種があります。多様性が私達のモデルを多くの入力と質問の形式に強固にすることを望みます。
最初に、元のフォーマットを見るためにデータファイルの数行を見ましょう。
corpus_name = "cornell movie-dialogs corpus" corpus = os.path.join("data", corpus_name) def printLines(file, n=10): with open(file, 'rb') as datafile: lines = datafile.readlines() for line in lines[:n]: print(line) printLines(os.path.join(corpus, "movie_lines.txt"))
b'L1045 +++$+++ u0 +++$+++ m0 +++$+++ BIANCA +++$+++ They do not!\n' b'L1044 +++$+++ u2 +++$+++ m0 +++$+++ CAMERON +++$+++ They do to!\n' b'L985 +++$+++ u0 +++$+++ m0 +++$+++ BIANCA +++$+++ I hope so.\n' b'L984 +++$+++ u2 +++$+++ m0 +++$+++ CAMERON +++$+++ She okay?\n' b"L925 +++$+++ u0 +++$+++ m0 +++$+++ BIANCA +++$+++ Let's go.\n" b'L924 +++$+++ u2 +++$+++ m0 +++$+++ CAMERON +++$+++ Wow\n' b"L872 +++$+++ u0 +++$+++ m0 +++$+++ BIANCA +++$+++ Okay -- you're gonna need to learn how to lie.\n" b'L871 +++$+++ u2 +++$+++ m0 +++$+++ CAMERON +++$+++ No\n' b'L870 +++$+++ u0 +++$+++ m0 +++$+++ BIANCA +++$+++ I\'m kidding. You know how sometimes you just become this "persona"? And you don\'t know how to quit?\n' b'L869 +++$+++ u0 +++$+++ m0 +++$+++ BIANCA +++$+++ Like my fear of wearing pastels?\n'
フォーマットされたデータファイルを作成する
便利のために、上手くフォーマットされたデータファイルを作成します、そこでは各行はタブ区切りな質問文と応答文のペアを含みます。
次の関数は生の movie_lines.txt データファイルのパーシングを容易にします。
- loadLines はファイルの各行をフィールド (lineID, characterID, movieID, character, text) の辞書に分けます。
- loadConversations は loadLines からの行のフィールドをmovie_conversations.txt に基づく会話へグループ分けします。
- extractSentencePairs は会話からセンテンスのペアを抽出します。
# Splits each line of the file into a dictionary of fields def loadLines(fileName, fields): lines = {} with open(fileName, 'r', encoding='iso-8859-1') as f: for line in f: values = line.split(" +++$+++ ") # Extract fields lineObj = {} for i, field in enumerate(fields): lineObj[field] = values[i] lines[lineObj['lineID']] = lineObj return lines # Groups fields of lines from `loadLines` into conversations based on *movie_conversations.txt* def loadConversations(fileName, lines, fields): conversations = [] with open(fileName, 'r', encoding='iso-8859-1') as f: for line in f: values = line.split(" +++$+++ ") # Extract fields convObj = {} for i, field in enumerate(fields): convObj[field] = values[i] # Convert string to list (convObj["utteranceIDs"] == "['L598485', 'L598486', ...]") lineIds = eval(convObj["utteranceIDs"]) # Reassemble lines convObj["lines"] = [] for lineId in lineIds: convObj["lines"].append(lines[lineId]) conversations.append(convObj) return conversations # Extracts pairs of sentences from conversations def extractSentencePairs(conversations): qa_pairs = [] for conversation in conversations: # Iterate over all the lines of the conversation for i in range(len(conversation["lines"]) - 1): # We ignore the last line (no answer for it) inputLine = conversation["lines"][i]["text"].strip() targetLine = conversation["lines"][i+1]["text"].strip() # Filter wrong samples (if one of the lists is empty) if inputLine and targetLine: qa_pairs.append([inputLine, targetLine]) return qa_pairs
今はこれらの関数を呼び出してファイルを作成します。それを formatted_movie_lines.txt と呼称します。
# Define path to new file datafile = os.path.join(corpus, "formatted_movie_lines.txt") delimiter = '\t' # Unescape the delimiter delimiter = str(codecs.decode(delimiter, "unicode_escape")) # Initialize lines dict, conversations list, and field ids lines = {} conversations = [] MOVIE_LINES_FIELDS = ["lineID", "characterID", "movieID", "character", "text"] MOVIE_CONVERSATIONS_FIELDS = ["character1ID", "character2ID", "movieID", "utteranceIDs"] # Load lines and process conversations print("\nProcessing corpus...") lines = loadLines(os.path.join(corpus, "movie_lines.txt"), MOVIE_LINES_FIELDS) print("\nLoading conversations...") conversations = loadConversations(os.path.join(corpus, "movie_conversations.txt"), lines, MOVIE_CONVERSATIONS_FIELDS) # Write new csv file print("\nWriting newly formatted file...") with open(datafile, 'w', encoding='utf-8') as outputfile: writer = csv.writer(outputfile, delimiter=delimiter, lineterminator='\n') for pair in extractSentencePairs(conversations): writer.writerow(pair) # Print a sample of lines print("\nSample lines from file:") printLines(datafile)
Processing corpus... Loading conversations... Writing newly formatted file... Sample lines from file: b"Can we make this quick? Roxanne Korrine and Andrew Barrett are having an incredibly horrendous public break- up on the quad. Again.\tWell, I thought we'd start with pronunciation, if that's okay with you.\n" b"Well, I thought we'd start with pronunciation, if that's okay with you.\tNot the hacking and gagging and spitting part. Please.\n" b"Not the hacking and gagging and spitting part. Please.\tOkay... then how 'bout we try out some French cuisine. Saturday? Night?\n" b"You're asking me out. That's so cute. What's your name again?\tForget it.\n" b"No, no, it's my fault -- we didn't have a proper introduction ---\tCameron.\n" b"Cameron.\tThe thing is, Cameron -- I'm at the mercy of a particularly hideous breed of loser. My sister. I can't date until she does.\n" b"The thing is, Cameron -- I'm at the mercy of a particularly hideous breed of loser. My sister. I can't date until she does.\tSeems like she could get a date easy enough...\n" b'Why?\tUnsolved mystery. She used to be really popular when she started high school, then it was just like she got sick of it or something.\n' b"Unsolved mystery. She used to be really popular when she started high school, then it was just like she got sick of it or something.\tThat's a shame.\n" b'Gosh, if only we could find Kat a boyfriend...\tLet me see what I can do.\n'
データをロードしてトリムする
次の仕事は語彙を作成して質問/応答センテンスのペアをメモリにロードすることです。私達は 単語 のシークエンスを扱っていて、これは離散数値空間への暗黙的なマッピングを持たないことに注意してください。そのため、データセットで遭遇する各一意な単語をインデックス値にマッピングすることにより一つを作成しなければなりません。
このため、Voc クラスを定義します、これは単語からインデックスへのマッピング、インデックスから単語への逆のマッピング、各単語のカウントそして合計の単語カウントを保持します。このクラスは単語を語彙に追加する (addWord)、センテンスの総ての単語を追加する (addSentence) そして稀に見る単語をトリムする (trim) ためのメソッドを提供します。トリミングについては更に後で。
# Default word tokens PAD_token = 0 # Used for padding short sentences SOS_token = 1 # Start-of-sentence token EOS_token = 2 # End-of-sentence token class Voc: def __init__(self, name): self.name = name self.trimmed = False self.word2index = {} self.word2count = {} self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"} self.num_words = 3 # Count SOS, EOS, PAD def addSentence(self, sentence): for word in sentence.split(' '): self.addWord(word) def addWord(self, word): if word not in self.word2index: self.word2index[word] = self.num_words self.word2count[word] = 1 self.index2word[self.num_words] = word self.num_words += 1 else: self.word2count[word] += 1 # Remove words below a certain count threshold def trim(self, min_count): if self.trimmed: return self.trimmed = True keep_words = [] for k, v in self.word2count.items(): if v >= min_count: keep_words.append(k) print('keep_words {} / {} = {:.4f}'.format( len(keep_words), len(self.word2index), len(keep_words) / len(self.word2index) )) # Reinitialize dictionaries self.word2index = {} self.word2count = {} self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"} self.num_words = 3 # Count default tokens for word in keep_words: self.addWord(word)
今では語彙と質問/応答センテンスのペアを集めることができます。このデータを使用する準備ができる前に、幾つかの前処理を遂行しなければなりません。
最初に、unicodeToAscii を使用して Unicode 文字列を ASCII に変換しなければなりません。次に総ての文字を小文字に変換して基本的な句読点を除いて非英字文字をトリムするべきです (normalizeString)。最後に、訓練の収束を助けるため、MAX_LENGTH しきい値よりも大きい長さのセンテンスをフィルターして除きます (filterPairs)。
MAX_LENGTH = 10 # Maximum sentence length to consider # Turn a Unicode string to plain ASCII, thanks to # https://stackoverflow.com/a/518232/2809427 def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' ) # Lowercase, trim, and remove non-letter characters def normalizeString(s): s = unicodeToAscii(s.lower().strip()) s = re.sub(r"([.!?])", r" \1", s) s = re.sub(r"[^a-zA-Z.!?]+", r" ", s) s = re.sub(r"\s+", r" ", s).strip() return s # Read query/response pairs and return a voc object def readVocs(datafile, corpus_name): print("Reading lines...") # Read the file and split into lines lines = open(datafile, encoding='utf-8').\ read().strip().split('\n') # Split every line into pairs and normalize pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines] voc = Voc(corpus_name) return voc, pairs # Returns True iff both sentences in a pair 'p' are under the MAX_LENGTH threshold def filterPair(p): # Input sequences need to preserve the last word for EOS token return len(p[0].split(' ')) < MAX_LENGTH and len(p[1].split(' ')) < MAX_LENGTH # Filter pairs using filterPair condition def filterPairs(pairs): return [pair for pair in pairs if filterPair(pair)] # Using the functions defined above, return a populated voc object and pairs list def loadPrepareData(corpus, corpus_name, datafile, save_dir): print("Start preparing training data ...") voc, pairs = readVocs(datafile, corpus_name) print("Read {!s} sentence pairs".format(len(pairs))) pairs = filterPairs(pairs) print("Trimmed to {!s} sentence pairs".format(len(pairs))) print("Counting words...") for pair in pairs: voc.addSentence(pair[0]) voc.addSentence(pair[1]) print("Counted words:", voc.num_words) return voc, pairs # Load/Assemble voc and pairs save_dir = os.path.join("data", "save") voc, pairs = loadPrepareData(corpus, corpus_name, datafile, save_dir) # Print some pairs to validate print("\npairs:") for pair in pairs[:10]: print(pair)
Start preparing training data ... Reading lines... Read 221282 sentence pairs Trimmed to 64271 sentence pairs Counting words... Counted words: 18008 pairs: ['there .', 'where ?'] ['you have my word . as a gentleman', 'you re sweet .'] ['hi .', 'looks like things worked out tonight huh ?'] ['you know chastity ?', 'i believe we share an art instructor'] ['have fun tonight ?', 'tons'] ['well no . . .', 'then that s all you had to say .'] ['then that s all you had to say .', 'but'] ['but', 'you always been this selfish ?'] ['do you listen to this crap ?', 'what crap ?'] ['what good stuff ?', 'the real you .']
訓練の間のより速い収束を獲得するために有益なもう一つの戦術は語彙から滅多に使用されない単語をトリミングすることです。特徴空間を縮小することはモデルが近似することを学習しなければならない関数の困難さをまた和らげます。これを 2 ステップのプロセスとして行ないます :
- MIN_COUNT しきい値未満に使用される単語を voc.trim 関数を使用してトリムします。
- トリムされた単語を伴うペアをフィルタします。
MIN_COUNT = 3 # Minimum word count threshold for trimming def trimRareWords(voc, pairs, MIN_COUNT): # Trim words used under the MIN_COUNT from the voc voc.trim(MIN_COUNT) # Filter out pairs with trimmed words keep_pairs = [] for pair in pairs: input_sentence = pair[0] output_sentence = pair[1] keep_input = True keep_output = True # Check input sentence for word in input_sentence.split(' '): if word not in voc.word2index: keep_input = False break # Check output sentence for word in output_sentence.split(' '): if word not in voc.word2index: keep_output = False break # Only keep pairs that do not contain trimmed word(s) in their input or output sentence if keep_input and keep_output: keep_pairs.append(pair) print("Trimmed from {} pairs to {}, {:.4f} of total".format(len(pairs), len(keep_pairs), len(keep_pairs) / len(pairs))) return keep_pairs # Trim voc and pairs pairs = trimRareWords(voc, pairs, MIN_COUNT)
keep_words 7823 / 18005 = 0.4345 Trimmed from 64271 pairs to 53165, 0.8272 of total
モデルのためのデータを準備する
私達のデータを素晴らしい語彙とセンテンス・ペアのリストに準備して揉みほぐす (= massage) ためにかなりの努力をしましたが、モデルは究極的には入力として数値の torch tensor を想定しています。モデルのために処理されたデータを準備する一つの方法は seq2seq 翻訳チュートリアル で見つけられます。そのチュートリアルで、1 のバッチサイズを使用します、これは私達が行わなければならない総てのことはセンテンスペアの単語を語彙から対応するインデックスに変換してこれをモデルに供給することです。
けれども、もし貴方が訓練を高速化することに関心がある and/or GPU 並列化機能を活用したいのであれば、ミニバッチで訓練する必要があります。
ミニバッチの使用はまたバッチのセンテンス長のバリエーションに留意する必要があることを意味します。同じバッチの異なるサイズのセンテンスを調整するには、shape (max_length, batch_size) のバッチ化された入力 tensor を作成します、ここでは max_length より短いセンテンスは EOS_token の後でゼロパディングされます。
もし英語センテンスを単語をそれらのインデックスに変換 (indexesFromSentence) して tensor に単純に変換してゼロパディングする場合、tensor は shape (batch_size, max_length) を持ちそして最初の次元へのインデックスは総ての時間ステップに渡る full シークエンスを返すでしょう。けれども、時間に沿って、そしてバッチの総てのシークエンスに渡りバッチをインデックスできる必要があります。それ故に、入力バッチ shape を (max_length, batch_size) に転置します、その結果最初の次元に渡るインデックスはバッチの総てのセンテンスに渡る時間ステップを返します。この転置を zeroPadding 関数内で暗黙的に処理します。
inputVar 関数はセンテンスを tensor に変換するプロセスを処理します、最終的には正しく shape されたゼロパディングされた tensor を作成します。それはまたバッチのシークエンスの各々のための長さの tensor を返します、これは後でデコーダに渡されます。
outputVar 関数は inputVar に類似した関数を遂行しますが、それは長さの tensor を返す代わりに、二値マスク tensor と最大ターゲット・センテンス長を返します。二値マスク tensor は出力ターゲット tensor と同じ shape を持ちますが、総ての要素は PAD_token は 0 で他の総ては 1 です。
batch2TrainData は単純に多くのペアを取り前述の関数を使用して入力とターゲット tensor を返します。
def indexesFromSentence(voc, sentence): return [voc.word2index[word] for word in sentence.split(' ')] + [EOS_token] def zeroPadding(l, fillvalue=PAD_token): return list(itertools.zip_longest(*l, fillvalue=fillvalue)) def binaryMatrix(l, value=PAD_token): m = [] for i, seq in enumerate(l): m.append([]) for token in seq: if token == PAD_token: m[i].append(0) else: m[i].append(1) return m # Returns padded input sequence tensor and lengths def inputVar(l, voc): indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l] lengths = torch.tensor([len(indexes) for indexes in indexes_batch]) padList = zeroPadding(indexes_batch) padVar = torch.LongTensor(padList) return padVar, lengths # Returns padded target sequence tensor, padding mask, and max target length def outputVar(l, voc): indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l] max_target_len = max([len(indexes) for indexes in indexes_batch]) padList = zeroPadding(indexes_batch) mask = binaryMatrix(padList) mask = torch.ByteTensor(mask) padVar = torch.LongTensor(padList) return padVar, mask, max_target_len # Returns all items for a given batch of pairs def batch2TrainData(voc, pair_batch): pair_batch.sort(key=lambda x: len(x[0].split(" ")), reverse=True) input_batch, output_batch = [], [] for pair in pair_batch: input_batch.append(pair[0]) output_batch.append(pair[1]) inp, lengths = inputVar(input_batch, voc) output, mask, max_target_len = outputVar(output_batch, voc) return inp, lengths, output, mask, max_target_len # Example for validation small_batch_size = 5 batches = batch2TrainData(voc, [random.choice(pairs) for _ in range(small_batch_size)]) input_variable, lengths, target_variable, mask, max_target_len = batches print("input_variable:", input_variable) print("lengths:", lengths) print("target_variable:", target_variable) print("mask:", mask) print("max_target_len:", max_target_len)
input_variable: tensor([[ 25, 3048, 7, 115, 625], [ 359, 571, 74, 76, 367], [ 4, 66, 742, 174, 4], [ 122, 25, 604, 6, 2], [ 95, 200, 174, 2, 0], [ 7, 177, 6, 0, 0], [2082, 53, 2, 0, 0], [3668, 1104, 0, 0, 0], [ 6, 4, 0, 0, 0], [ 2, 2, 0, 0, 0]]) lengths: tensor([10, 10, 7, 5, 4]) target_variable: tensor([[ 7, 1264, 33, 3577, 51], [ 379, 4, 76, 4, 109], [ 41, 25, 102, 2, 3065], [ 36, 200, 29, 0, 4], [ 4, 123, 1086, 0, 2], [ 2, 40, 4, 0, 0], [ 0, 158, 2, 0, 0], [ 0, 467, 0, 0, 0], [ 0, 4, 0, 0, 0], [ 0, 2, 0, 0, 0]]) mask: tensor([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 0, 1], [1, 1, 1, 0, 1], [1, 1, 1, 0, 0], [0, 1, 1, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0]], dtype=torch.uint8) max_target_len: 10
モデルを定義する
Seq2Seq モデル
私達のチャットボットの頭脳は sequence-to-sequence (seq2seq) モデルです。seq2seq モデルの目標は入力として可変長シークエンスを取り、固定サイズのモデルを使用して出力として可変長シークエンスを返すことです。
Sutskever et al. は 2 つの別個のリカレント・ニューラルネットを一緒に使用することにより、このタスクを達成できることを発見しました。一つの RNN は エンコーダ として機能します、これは可変長入力シークエンスを固定長コンテキスト・ベクトルにエンコードします。理論的には、このコンテキスト・ベクトルはボットへの入力である質問センテンスについての意味的情報を含みます。2 番目の RNN は デコーダ です、これは入力単語とコンテキスト・ベクトルを取り、センテンスの次の単語のための推測と次の反復で使用する隠れ状態を返します。
エンコーダ
エンコーダ RNN は入力センテンスを一度に一つのトークン (e.g. 単語) を通して反復し、各時間ステップで「出力」ベクトルと「隠れ状態」ベクトルを出力します。それから隠れ状態ベクトルは次の時間ステップに渡されます、その一方で出力ベクトルは記録されます。エンコーダはシークエンスの各ポイントでそれが見たコンテキストを高次元空間のポイントのセットに変換します、これはデコーダが与えられたタスクのための意味のある出力を生成するために使用します。
エンコーダの中心部は Cho et al. in 2014 により考案された多層 Gated Recurrent Unit です。GRU の双方向変種を使用します、これは本質的には2 つの独立した RNN があることを意味します :一つは入力シークエンスが通常のシーケンシャル順で供給され、そして一つは入力シークエンスが逆順で供給されます。各ネットワークの出力は各時間ステップで合計されます。双方向 GRU の使用は過去と未来のコンテキストの両者をエンコードする優位を与えてくれます。
Bidirectional RNN:
埋め込み層は単語インデックスを任意のサイズの特徴空間にエンコードするために使用されることに注意してください。私達のモデルのために、この層は各単語をサイズ hidden_size の特徴空間にマップします。訓練されるとき、これらの値は類似の意味の単語間の意味的類似性をエンコードするはずです。
最後に、シークエンスのパッドされたバッチを RNN モジュールに渡す場合、nn.utils.rnn.pack_padded_sequence と nn.utils.rnn.pad_packed_sequence をそれぞれ使用して RNN パス回りでパディングをパックとアンパックしなければなりません。
計算グラフ :
- 単語インデックスを埋め込みに変換する。
- RNN モジュールのためにシークエンスのパッドされたバッチをパックする
- GRU を通した forward パス。
- パディングをアンパックする。
- 双方向 GRU 出力を合計する。
- 出力と最終的な隠れ状態を返します。
入力 :
- input_seq: 入力センテンスのバッチ; shape=(max_length, batch_size)
- input_lengths: バッチの各センテンスに対応するセンテンス長のリスト; shape=(batch_size)
- hidden: 隠れ状態; shape=(n_layers x num_directions, batch_size, hidden_size)
出力 :
- outputs: GRU の最後の隠れ層からの出力特徴 (双方向出力の総計); shape=(max_length, batch_size, hidden_size)
- hidden: GRU からの更新された隠れ状態; shape=(n_layers x num_directions, batch_size, hidden_size)
class EncoderRNN(nn.Module): def __init__(self, hidden_size, embedding, n_layers=1, dropout=0): super(EncoderRNN, self).__init__() self.n_layers = n_layers self.hidden_size = hidden_size self.embedding = embedding # Initialize GRU; the input_size and hidden_size params are both set to 'hidden_size' # because our input size is a word embedding with number of features == hidden_size self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout), bidirectional=True) def forward(self, input_seq, input_lengths, hidden=None): # Convert word indexes to embeddings embedded = self.embedding(input_seq) # Pack padded batch of sequences for RNN module packed = nn.utils.rnn.pack_padded_sequence(embedded, input_lengths) # Forward pass through GRU outputs, hidden = self.gru(packed, hidden) # Unpack padding outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs) # Sum bidirectional GRU outputs outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size:] # Return output and final hidden state return outputs, hidden
デコーダ
デコーダ RNN はトークン毎流儀で応答センテンスを生成します。それはシークエンスの次の単語を生成するためにエンコーダのコンテキスト・ベクトル、そして内部隠れ状態を使用します。それはそれがセンテンスの終わりを表わす EOS_token を出力するまで単語を生成し続けます。vanilla seq2seq デコーダに伴う一般的な問題はもし入力シークエンス全体の意味をエンコードするためにコンテキスト・ベクトルにだけ依拠するするのであれば情報損失を伴いがちであることです。特に長い入力シークエンスを処理するとき、デコーダの能力を非常に制限することは事実です。
これに対処するために、Bahdanau et al. は、総てのステップで固定されたコンテキスト全体を利用するのではなく、デコーダに入力シークエンスの特定の部分に注意を払うことを可能にする「attention メカニズム」を作成しました。
高位では、attention はデコーダの現在の隠れ状態とエンコーダの出力を使用して計算されます。出力 attention 重みは入力シークエンスと同じ shape を持ち、それらをエンコーダ出力で乗算することを可能にし、注意すべきエンコーダ出力の部分を示す重み付けられた総計を与えてくれます。Sean Robertson の図はこれを非常に上手く説明します :
Luong et al. は Bahdanau et al. の基盤を "グローバル attention" を作成することにより改良しました。主な違いは "グローバル attention" では、現在の時間ステップからのエンコーダの隠れ状態だけを考慮する、 Bahdanau et al の "ローカル attention" とは対照的に、エンコーダの隠れ状態の総てを考慮します。もう一つの他の違いは "グローバル attention" では、attention 重み、あるいはエネルギーを現在の時間ステップだけからデコーダの隠れ状態を使用して計算することです。Bahdanau et al. の attention 計算は前の時間ステップからのデコーダの状態の知識を必要とします。また、Luong et al. は「スコア関数」と呼ばれる、エンコーダ出力とデコーダ出力の間の attention エネルギーを計算するための様々な方法を提供します。
ここで $h_t$ = 現在のターゲット・デコーダ状態そして $\bar{h}_s$ = 総てのエンコーダ状態です。
全体として、グローバル attention メカニズムは次の図により要約できます。"Attention 層を" Attn と呼ばれる個別の nn.Module として実装することに注意してください。このモジュールの出力は softmax で正規化された shape (batch_size, 1, max_length) の重み tensor です。
# Luong attention layer class Attn(nn.Module): def __init__(self, method, hidden_size): super(Attn, self).__init__() self.method = method if self.method not in ['dot', 'general', 'concat']: raise ValueError(self.method, "is not an appropriate attention method.") self.hidden_size = hidden_size if self.method == 'general': self.attn = nn.Linear(self.hidden_size, hidden_size) elif self.method == 'concat': self.attn = nn.Linear(self.hidden_size * 2, hidden_size) self.v = nn.Parameter(torch.FloatTensor(hidden_size)) def dot_score(self, hidden, encoder_output): return torch.sum(hidden * encoder_output, dim=2) def general_score(self, hidden, encoder_output): energy = self.attn(encoder_output) return torch.sum(hidden * energy, dim=2) def concat_score(self, hidden, encoder_output): energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh() return torch.sum(self.v * energy, dim=2) def forward(self, hidden, encoder_outputs): # Calculate the attention weights (energies) based on the given method if self.method == 'general': attn_energies = self.general_score(hidden, encoder_outputs) elif self.method == 'concat': attn_energies = self.concat_score(hidden, encoder_outputs) elif self.method == 'dot': attn_energies = self.dot_score(hidden, encoder_outputs) # Transpose max_length and batch_size dimensions attn_energies = attn_energies.t() # Return the softmax normalized probability scores (with added dimension) return F.softmax(attn_energies, dim=1).unsqueeze(1)
attention サブモジュールを定義した今、実際のデコーダモデルを実装できます。デコーダに対しては、バッチを一度に 1 時間ステップ手動で供給します。これは埋め込み単語 tensor と GRU 出力は両者とも shape (1, batch_size, hidden_size) を持つことを意味します。
計算グラフ :
- 現在の入力単語の埋め込みを得る。
- unidirectional GRU を通して forward。
- (2) からの現在の GRU 主力からの attention 重みを計算する。
- 新しい「重み総計」コンテキスト・ベクトルを得るためにエンコーダ出力への attention 重みを乗算する。
- Luong eq. 5 を使用して重み付けられたコンテキストと GRU 出力を結合する。
- Luong eq. 6 (without softmax) を使用して次の単語を予測する。
- 出力と最後の隠れ状態を返す。
入力 :
- input_step: 入力センテンス・バッチの 1 時間ステップ (1 単語) ; shape=(1, batch_size)
- last_hidden: GRU の最後の隠れ層 ; shape=(n_layers x num_directions, batch_size, hidden_size)
- encoder_outputs: エンコーダモデルの出力 ; shape=(max_length, batch_size, hidden_size)
出力 :
- output: softmax で正規化された tensor で、デコードされたシークエンスで各単語が正しい次の単語である確率を与えます ; shape=(batch_size, voc.num_words)
- hidden: GRU の最後の隠れ状態 ; shape=(n_layers x num_directions, batch_size, hidden_size)
class LuongAttnDecoderRNN(nn.Module): def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1): super(LuongAttnDecoderRNN, self).__init__() # Keep for reference self.attn_model = attn_model self.hidden_size = hidden_size self.output_size = output_size self.n_layers = n_layers self.dropout = dropout # Define layers self.embedding = embedding self.embedding_dropout = nn.Dropout(dropout) self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout)) self.concat = nn.Linear(hidden_size * 2, hidden_size) self.out = nn.Linear(hidden_size, output_size) self.attn = Attn(attn_model, hidden_size) def forward(self, input_step, last_hidden, encoder_outputs): # Note: we run this one step (word) at a time # Get embedding of current input word embedded = self.embedding(input_step) embedded = self.embedding_dropout(embedded) # Forward through unidirectional GRU rnn_output, hidden = self.gru(embedded, last_hidden) # Calculate attention weights from the current GRU output attn_weights = self.attn(rnn_output, encoder_outputs) # Multiply attention weights to encoder outputs to get new "weighted sum" context vector context = attn_weights.bmm(encoder_outputs.transpose(0, 1)) # Concatenate weighted context vector and GRU output using Luong eq. 5 rnn_output = rnn_output.squeeze(0) context = context.squeeze(1) concat_input = torch.cat((rnn_output, context), 1) concat_output = torch.tanh(self.concat(concat_input)) # Predict next word using Luong eq. 6 output = self.out(concat_output) output = F.softmax(output, dim=1) # Return output and final hidden state return output, hidden
訓練手続きを定義する
Masked 損失
パッドされたシークエンスのバッチを処理していますので、損失を計算するとき tensor の総ての要素を単純に考えることはできません。デコーダの出力 tensor、ターゲット tensor、そしてターゲット tensor のパディングを表わす二値マスク tensor に基づく損失を計算するために maskNLLLoss を定義します。この損失関数はマスク tensor の 1 に対応する要素の平均の負の対数尤度 を計算します。
def maskNLLLoss(inp, target, mask): nTotal = mask.sum() crossEntropy = -torch.log(torch.gather(inp, 1, target.view(-1, 1)).squeeze(1)) loss = crossEntropy.masked_select(mask).mean() loss = loss.to(device) return loss, nTotal.item()
単一訓練反復
train 関数は単一訓練反復 (入力の単一バッチ) のためのアルゴリズムを含みます。
収束に役立つ 2 つの賢いトリックを使用します :
- 最初のトリックは teacher forcing を使用します。これは teacher_forcing_ratio により設定されるある確率で、デコーダの次の入力としてデコーダの現在の推測ではなく現在のターゲット単語を使用することを意味します。このテクニックはデコーダのための訓練ハンドル (= wheel) として動作し、より効率的な訓練に役立ちます。けれども、teacher forcing は推論の間モデルの不安定性に繋がる可能性があります、それはデコーダが訓練の間にそれ自身の出力シークエンスを真に作り上げる十分な機会を持たないかもしれないためです。このように、teacher_forcing_ratio をどのように設定しているかに留意しなければなりません、そして高速な収束に騙されてはいけません。
- 実装する 2 番目のトリックは勾配クリッピングです。これは「勾配爆発」問題に対抗するための一般に使用されるテクニックです。本質的に、勾配を最大値にクリッピングまたは閾値を置くことにより、勾配が指数関数的に増大してオーバーフロー (NaN) やコスト関数で急勾配な崖を行き過ぎることから回避します。
演算のシークエンス :
- 入力バッチ全体をエンコーダを通して forward パスさせる。
- デコーダ入力を SOS_token として、そして隠れ状態をエンコーダの最後の隠れ状態として初期化します。
- 入力バッチシークエンスをデコーダを通して一度に 1 時間ステップ forward させる。
- If teacher forcing: 次のデコーダ入力を現在のターゲットとして設定する; else: 次のデコーダ入力を現在のデコーダ出力として設定する。
- 損失を計算して累積する。
- 逆伝播を遂行する。
- 勾配をクリップする。
- エンコーダとデコーダモデル・パラメータを更新する。
Note : PyTorch の RNN モジュール (RNN, LSTM, GRU) はそれらに入力シークエンス全体 (or シークエンスのバッチ) を単純に渡すことにより任意の他の非リカレント層のように使用できます。エンコーダで GRU 層をこのように使用します。実際には内部的には、隠れ状態を計算する各時間ステップに渡りループする反復プロセスがあります。代わりに、これらのモジュールを一度に 1 時間ステップ実行することができます。この場合、デコーダモデルのために行わなければならないように訓練プロセスの間シークエンスに渡り手動でループします。これらのモジュールの正しい概念のモデルを維持する限りは、シーケンシャルモデルの実装は非常に率直です。
def train(input_variable, lengths, target_variable, mask, max_target_len, encoder, decoder, embedding, encoder_optimizer, decoder_optimizer, batch_size, clip, max_length=MAX_LENGTH): # Zero gradients encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() # Set device options input_variable = input_variable.to(device) lengths = lengths.to(device) target_variable = target_variable.to(device) mask = mask.to(device) # Initialize variables loss = 0 print_losses = [] n_totals = 0 # Forward pass through encoder encoder_outputs, encoder_hidden = encoder(input_variable, lengths) # Create initial decoder input (start with SOS tokens for each sentence) decoder_input = torch.LongTensor([[SOS_token for _ in range(batch_size)]]) decoder_input = decoder_input.to(device) # Set initial decoder hidden state to the encoder's final hidden state decoder_hidden = encoder_hidden[:decoder.n_layers] # Determine if we are using teacher forcing this iteration use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False # Forward batch of sequences through decoder one time step at a time if use_teacher_forcing: for t in range(max_target_len): decoder_output, decoder_hidden = decoder( decoder_input, decoder_hidden, encoder_outputs ) # Teacher forcing: next input is current target decoder_input = target_variable[t].view(1, -1) # Calculate and accumulate loss mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t]) loss += mask_loss print_losses.append(mask_loss.item() * nTotal) n_totals += nTotal else: for t in range(max_target_len): decoder_output, decoder_hidden = decoder( decoder_input, decoder_hidden, encoder_outputs反復 ) # No teacher forcing: next input is decoder's own current output _, topi = decoder_output.topk(1) decoder_input = torch.LongTensor([[topi[i][0] for i in range(batch_size)]]) decoder_input = decoder_input.to(device) # Calculate and accumulate loss mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t]) loss += mask_loss print_losses.append(mask_loss.item() * nTotal) n_totals += nTotal # Perform backpropatation loss.backward() # Clip gradients: gradients are modified in place _ = nn.utils.clip_grad_norm_(encoder.parameters(), clip) _ = nn.utils.clip_grad_norm_(decoder.parameters(), clip) # Adjust model weights encoder_optimizer.step() decoder_optimizer.step() return sum(print_losses) / n_totals
訓練反復
最後に完全な訓練手続きをデータと一緒に結びつける時です。trainIters 関数は渡されたモデル, optimizers, データ等が与えられたとき訓練の n_iterations を実行する責任があります。この関数は極めて自明です、何故ならば train 関数とともに力仕事を行なったからです。注意すべき一つのことはモデルをセーブするとき、エンコーダとデコーダ state_dicts (パラメータ), optimizer の state_dicts, 損失, iteration 等を含む tar ボールセーブすることです。このようにモデルをセーブすることはチェックポイントで究極的な柔軟性を与えてくれます。チェックポイントをロード後、推論を実行するためにモデルパラメータを実行できるでしょう、あるいは訓練をやめたところから直ちに継続できます。
def trainIters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer, embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iteration, batch_size, print_every, save_every, clip, corpus_name, loadFilename): # Load batches for each iteration training_batches = [batch2TrainData(voc, [random.choice(pairs) for _ in range(batch_size)]) for _ in range(n_iteration)] # Initializations print('Initializing ...') start_iteration = 1 print_loss = 0 if loadFilename: start_iteration = checkpoint['iteration'] + 1 # Training loop print("Training...") for iteration in range(start_iteration, n_iteration + 1): training_batch = training_batches[iteration - 1] # Extract fields from batch input_variable, lengths, target_variable, mask, max_target_len = training_batch # Run a training iteration with batch loss = train(input_variable, lengths, target_variable, mask, max_target_len, encoder, decoder, embedding, encoder_optimizer, decoder_optimizer, batch_size, clip) print_loss += loss # Print progress if iteration % print_every == 0: print_loss_avg = print_loss / print_every print("Iteration: {}; Percent complete: {:.1f}%; Average loss: {:.4f}".format(iteration, iteration / n_iteration * 100, print_loss_avg)) print_loss = 0 # Save checkpoint if (iteration % save_every == 0): directory = os.path.join(save_dir, model_name, corpus_name, '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size)) if not os.path.exists(directory): os.makedirs(directory) torch.save({ 'iteration': iteration, 'en': encoder.state_dict(), 'de': decoder.state_dict(), 'en_opt': encoder_optimizer.state_dict(), 'de_opt': decoder_optimizer.state_dict(), 'loss': loss, 'voc_dict': voc.__dict__, 'embedding': embedding.state_dict() }, os.path.join(directory, '{}_{}.tar'.format(iteration, 'checkpoint')))
評価を定義する
モデル訓練後、ボットに私達自身でボットと話しができることを望みます。最初に、モデルにエンコードされた入力をどのようにデコードすることを望むかを定義しなければなりません。
Greedy デコーディング
Greedy デコーディングは訓練の間に teacher forcing を 使用しない ときに使用するデコーディングの方法です。換言すれば、各時間ステップのために、最も高い softmax 値を持つ decoder_output から単語を単純に選択します。このデコーディング方法は単一の時間ステップレベルで最適です。
greedy デコーディング演算を容易にするために、GreedySearchDecoder クラスを定義します。実行時、このクラスのオブジェクトは shape (input_seq length, 1) の入力シークエンス (input_seq)、スカラー入力長 (input_length) tensor、そして応答センテンス長を抑制するための max_length を取ります。入力センテンスは次の計算グラフを使用して評価されます。
計算グラフ :
- 入力をエンコーダを通して foward する。
- エンコーダの最後の隠れ層をデコーダへの最初の隠れ入力として準備する。
- デコーダの最初の入力を SOS_token として初期化する。
- tensor をそれにデコードされた単語を付加するために初期化します。
- 反復的に一度に 1 つの単語トークンをデコードします :
- デコーダを通した forward パス。
- 最尤単語トークンとその softmax スコアを得る。
- トークンとスコアを記録する。
- 現在のトークンを次のデコーダ入力として準備する。
- 単語トークンとスコアのコレクションを返す。
class GreedySearchDecoder(nn.Module): def __init__(self, encoder, decoder): super(GreedySearchDecoder, self).__init__() self.encoder = encoder self.decoder = decoder def forward(self, input_seq, input_length, max_length): # Forward input through encoder model encoder_outputs, encoder_hidden = self.encoder(input_seq, input_length) # Prepare encoder's final hidden layer to be first hidden input to the decoder decoder_hidden = encoder_hidden[:decoder.n_layers] # Initialize decoder input with SOS_token decoder_input = torch.ones(1, 1, device=device, dtype=torch.long) * SOS_token # Initialize tensors to append decoded words to all_tokens = torch.zeros([0], device=device, dtype=torch.long) all_scores = torch.zeros([0], device=device) # Iteratively decode one word token at a time for _ in range(max_length): # Forward pass through decoder decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs) # Obtain most likely word token and its softmax score decoder_scores, decoder_input = torch.max(decoder_output, dim=1) # Record token and score all_tokens = torch.cat((all_tokens, decoder_input), dim=0) all_scores = torch.cat((all_scores, decoder_scores), dim=0) # Prepare current token to be next decoder input (add a dimension) decoder_input = torch.unsqueeze(decoder_input, 0) # Return collections of word tokens and scores return all_tokens, all_scores
テキストを評価する
デコーディング方法を定義した今、文字列入力シークエンスを評価するための関数を書くことができます。evaluate 関数は入力センテンスを処理する低位プロセスを管理します。最初にセンテンスを batch_size==1 を持つ単語インデックスの入力バッチとしてフォーマットします。センテンスの単語を対応するインデックスに変換し、そしてモデルのための tensor を準備するために次元を transpose することによりこれを行ないます。入力センテンスの長さを含む長さ tensor も作成します。この場合、長さはスカラーです、何故ならば一度に 1 つのセンテンスを評価しているだけだからです (batch_size==1)。次に、GreedySearchDecoder オブジェクト (searcher) を使用してデコードされた応答センテンス tensor を得ます。最後に、応答のインデックスを単語に変換してデコードされた単語のリストを返します。
evaluateInput は私達のチャットボットのためのユーザ・インターフェイスとして機能します。呼び出されたとき、入力テキスト・フィールドが生成され、そこで質問センテンスを入力できます。入力センテンスをタイプして Enter を押した後、テキストは訓練データと同じ方法で正規化されて最終的にデコードされた出力センテンスを得るために evaluate 関数に供給されます。このプロセスをループさせます、そして "q" か "quit" を入力するまでボットとチャットし続けることができます。
最後に、語彙にない単語を含むセンテンスが入力された場合、これをエラーメッセージをプリントしてユーザに他のセンテンスを促すことにより率直に処理します。
def evaluate(encoder, decoder, searcher, voc, sentence, max_length=MAX_LENGTH): ### Format input sentence as a batch # words -> indexes indexes_batch = [indexesFromSentence(voc, sentence)] # Create lengths tensor lengths = torch.tensor([len(indexes) for indexes in indexes_batch]) # Transpose dimensions of batch to match models' expectations input_batch = torch.LongTensor(indexes_batch).transpose(0, 1) # Use appropriate device input_batch = input_batch.to(device) lengths = lengths.to(device) # Decode sentence with searcher tokens, scores = searcher(input_batch, lengths, max_length) # indexes -> words decoded_words = [voc.index2word[token.item()] for token in tokens] return decoded_words def evaluateInput(encoder, decoder, searcher, voc): input_sentence = '' while(1): try: # Get input sentence input_sentence = input('> ') # Check if it is quit case if input_sentence == 'q' or input_sentence == 'quit': break # Normalize sentence input_sentence = normalizeString(input_sentence) # Evaluate sentence output_words = evaluate(encoder, decoder, searcher, voc, input_sentence) # Format and print response sentence output_words[:] = [x for x in output_words if not (x == 'EOS' or x == 'PAD')] print('Bot:', ' '.join(output_words)) except KeyError: print("Error: Encountered unknown word.")
モデルを実行する
最後に、モデルを実行するときです!
チャットボット・モデルを訓練かテストのいずれを望むかにかかわらず、個々のエンコーダとデコーダモデルを初期化しなければなりません。次のブロックでは、望まれる configuration を設定し、スクラッチから始めるかロードするチェックポイントを設定するかを選択し、そしてモデルを構築して初期化します。パフォーマンスを最適化するために異なるモデル configuration で自由に遊んでください。
# Configure models model_name = 'cb_model' attn_model = 'dot' #attn_model = 'general' #attn_model = 'concat' hidden_size = 500 encoder_n_layers = 2 decoder_n_layers = 2 dropout = 0.1 batch_size = 64 # Set checkpoint to load from; set to None if starting from scratch loadFilename = None checkpoint_iter = 4000 #loadFilename = os.path.join(save_dir, model_name, corpus_name, # '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size), # '{}_checkpoint.tar'.format(checkpoint_iter)) # Load model if a loadFilename is provided if loadFilename: # If loading on same machine the model was trained on checkpoint = torch.load(loadFilename) # If loading a model trained on GPU to CPU #checkpoint = torch.load(loadFilename, map_location=torch.device('cpu')) encoder_sd = checkpoint['en'] decoder_sd = checkpoint['de'] encoder_optimizer_sd = checkpoint['en_opt'] decoder_optimizer_sd = checkpoint['de_opt'] embedding_sd = checkpoint['embedding'] voc.__dict__ = checkpoint['voc_dict'] print('Building encoder and decoder ...') # Initialize word embeddings embedding = nn.Embedding(voc.num_words, hidden_size) if loadFilename: embedding.load_state_dict(embedding_sd) # Initialize encoder & decoder models encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout) decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size, voc.num_words, decoder_n_layers, dropout) if loadFilename: encoder.load_state_dict(encoder_sd) decoder.load_state_dict(decoder_sd) # Use appropriate device encoder = encoder.to(device) decoder = decoder.to(device) print('Models built and ready to go!')
Building encoder and decoder ... Models built and ready to go!
訓練を実行する
モデルを訓練することを望む場合次のブロックを実行してください。
最初に訓練パラメータを設定し、それから optimizer を初期化し、そして最後に訓練反復を実行するために trainIters 関数を呼び出します。
# Configure training/optimization clip = 50.0 teacher_forcing_ratio = 1.0 learning_rate = 0.0001 decoder_learning_ratio = 5.0 n_iteration = 4000 print_every = 1 save_every = 500 # Ensure dropout layers are in train mode encoder.train() decoder.train() # Initialize optimizers print('Building optimizers ...') encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate) decoder_optimizer = optim.Adam(decoder.parameters(), lr=learning_rate * decoder_learning_ratio) if loadFilename: encoder_optimizer.load_state_dict(encoder_optimizer_sd) decoder_optimizer.load_state_dict(decoder_optimizer_sd) # Run training iterations print("Starting Training!") trainIters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer, embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iteration, batch_size, print_every, save_every, clip, corpus_name, loadFilename)
Building optimizers ... Starting Training! Initializing ... Training... Iteration: 1; Percent complete: 0.0%; Average loss: 8.9700 Iteration: 2; Percent complete: 0.1%; Average loss: 8.8510 Iteration: 3; Percent complete: 0.1%; Average loss: 8.6125 Iteration: 4; Percent complete: 0.1%; Average loss: 8.3319 Iteration: 5; Percent complete: 0.1%; Average loss: 7.8880 Iteration: 6; Percent complete: 0.1%; Average loss: 7.3496 Iteration: 7; Percent complete: 0.2%; Average loss: 6.8200 Iteration: 8; Percent complete: 0.2%; Average loss: 6.8438 Iteration: 9; Percent complete: 0.2%; Average loss: 6.6951 Iteration: 10; Percent complete: 0.2%; Average loss: 6.4766 Iteration: 11; Percent complete: 0.3%; Average loss: 6.2165 Iteration: 12; Percent complete: 0.3%; Average loss: 5.7065 Iteration: 13; Percent complete: 0.3%; Average loss: 5.5910 Iteration: 14; Percent complete: 0.4%; Average loss: 5.7643 Iteration: 15; Percent complete: 0.4%; Average loss: 5.4197 Iteration: 16; Percent complete: 0.4%; Average loss: 5.1872 Iteration: 17; Percent complete: 0.4%; Average loss: 5.1850 Iteration: 18; Percent complete: 0.4%; Average loss: 5.0741 Iteration: 19; Percent complete: 0.5%; Average loss: 4.9552 Iteration: 20; Percent complete: 0.5%; Average loss: 4.9188 Iteration: 21; Percent complete: 0.5%; Average loss: 4.8449 Iteration: 22; Percent complete: 0.5%; Average loss: 5.0830 Iteration: 23; Percent complete: 0.6%; Average loss: 4.6836 Iteration: 24; Percent complete: 0.6%; Average loss: 5.0436 Iteration: 25; Percent complete: 0.6%; Average loss: 4.8137 Iteration: 26; Percent complete: 0.7%; Average loss: 4.8722 Iteration: 27; Percent complete: 0.7%; Average loss: 4.5043 Iteration: 28; Percent complete: 0.7%; Average loss: 4.8190 Iteration: 29; Percent complete: 0.7%; Average loss: 4.9813 Iteration: 30; Percent complete: 0.8%; Average loss: 4.8759 Iteration: 31; Percent complete: 0.8%; Average loss: 4.6561 Iteration: 32; Percent complete: 0.8%; Average loss: 4.6601 Iteration: 33; Percent complete: 0.8%; Average loss: 4.8248 Iteration: 34; Percent complete: 0.9%; Average loss: 4.8463 Iteration: 35; Percent complete: 0.9%; Average loss: 4.6433 Iteration: 36; Percent complete: 0.9%; Average loss: 4.8477 Iteration: 37; Percent complete: 0.9%; Average loss: 4.7450 Iteration: 38; Percent complete: 0.9%; Average loss: 4.8099 Iteration: 39; Percent complete: 1.0%; Average loss: 4.8009 Iteration: 40; Percent complete: 1.0%; Average loss: 4.8867 Iteration: 41; Percent complete: 1.0%; Average loss: 4.5996 Iteration: 42; Percent complete: 1.1%; Average loss: 4.6946 Iteration: 43; Percent complete: 1.1%; Average loss: 4.6344 Iteration: 44; Percent complete: 1.1%; Average loss: 4.5463 Iteration: 45; Percent complete: 1.1%; Average loss: 4.5047 Iteration: 46; Percent complete: 1.1%; Average loss: 4.6456 Iteration: 47; Percent complete: 1.2%; Average loss: 4.8639 Iteration: 48; Percent complete: 1.2%; Average loss: 4.5855 Iteration: 49; Percent complete: 1.2%; Average loss: 4.9177 Iteration: 50; Percent complete: 1.2%; Average loss: 4.7859 Iteration: 51; Percent complete: 1.3%; Average loss: 4.5807 Iteration: 52; Percent complete: 1.3%; Average loss: 4.6704 Iteration: 53; Percent complete: 1.3%; Average loss: 4.5819 Iteration: 54; Percent complete: 1.4%; Average loss: 4.6947 Iteration: 55; Percent complete: 1.4%; Average loss: 4.5120 Iteration: 56; Percent complete: 1.4%; Average loss: 4.5087 Iteration: 57; Percent complete: 1.4%; Average loss: 4.3663 Iteration: 58; Percent complete: 1.5%; Average loss: 4.6250 Iteration: 59; Percent complete: 1.5%; Average loss: 4.3907 Iteration: 60; Percent complete: 1.5%; Average loss: 4.5351 Iteration: 61; Percent complete: 1.5%; Average loss: 4.7792 Iteration: 62; Percent complete: 1.6%; Average loss: 4.5312 Iteration: 63; Percent complete: 1.6%; Average loss: 4.4148 Iteration: 64; Percent complete: 1.6%; Average loss: 4.6137 Iteration: 65; Percent complete: 1.6%; Average loss: 4.5955 Iteration: 66; Percent complete: 1.7%; Average loss: 4.5643 Iteration: 67; Percent complete: 1.7%; Average loss: 4.5415 Iteration: 68; Percent complete: 1.7%; Average loss: 4.2983 Iteration: 69; Percent complete: 1.7%; Average loss: 4.5145 Iteration: 70; Percent complete: 1.8%; Average loss: 4.3834 Iteration: 71; Percent complete: 1.8%; Average loss: 4.3725 Iteration: 72; Percent complete: 1.8%; Average loss: 4.5775 Iteration: 73; Percent complete: 1.8%; Average loss: 4.4024 Iteration: 74; Percent complete: 1.8%; Average loss: 4.7020 Iteration: 75; Percent complete: 1.9%; Average loss: 4.9874 Iteration: 76; Percent complete: 1.9%; Average loss: 4.3946 Iteration: 77; Percent complete: 1.9%; Average loss: 4.6714 Iteration: 78; Percent complete: 1.9%; Average loss: 4.6943 Iteration: 79; Percent complete: 2.0%; Average loss: 4.4128 Iteration: 80; Percent complete: 2.0%; Average loss: 4.3681 Iteration: 81; Percent complete: 2.0%; Average loss: 4.2517 Iteration: 82; Percent complete: 2.1%; Average loss: 4.4193 Iteration: 83; Percent complete: 2.1%; Average loss: 4.6773 Iteration: 84; Percent complete: 2.1%; Average loss: 4.5019 Iteration: 85; Percent complete: 2.1%; Average loss: 4.7879 Iteration: 86; Percent complete: 2.1%; Average loss: 4.3886 Iteration: 87; Percent complete: 2.2%; Average loss: 4.5343 Iteration: 88; Percent complete: 2.2%; Average loss: 4.3677 Iteration: 89; Percent complete: 2.2%; Average loss: 4.2723 Iteration: 90; Percent complete: 2.2%; Average loss: 4.2885 Iteration: 91; Percent complete: 2.3%; Average loss: 4.2639 Iteration: 92; Percent complete: 2.3%; Average loss: 4.5278 Iteration: 93; Percent complete: 2.3%; Average loss: 4.7404 Iteration: 94; Percent complete: 2.4%; Average loss: 4.2921 Iteration: 95; Percent complete: 2.4%; Average loss: 4.3591 Iteration: 96; Percent complete: 2.4%; Average loss: 4.4808 Iteration: 97; Percent complete: 2.4%; Average loss: 4.5840 Iteration: 98; Percent complete: 2.5%; Average loss: 4.2998 Iteration: 99; Percent complete: 2.5%; Average loss: 4.6606 Iteration: 100; Percent complete: 2.5%; Average loss: 4.5687 Iteration: 101; Percent complete: 2.5%; Average loss: 4.2995 Iteration: 102; Percent complete: 2.5%; Average loss: 4.5056 Iteration: 103; Percent complete: 2.6%; Average loss: 4.5341 Iteration: 104; Percent complete: 2.6%; Average loss: 4.5375 Iteration: 105; Percent complete: 2.6%; Average loss: 4.3892 Iteration: 106; Percent complete: 2.6%; Average loss: 4.5028 Iteration: 107; Percent complete: 2.7%; Average loss: 4.1008 Iteration: 108; Percent complete: 2.7%; Average loss: 4.4503 Iteration: 109; Percent complete: 2.7%; Average loss: 4.3562 Iteration: 110; Percent complete: 2.8%; Average loss: 4.4579 Iteration: 111; Percent complete: 2.8%; Average loss: 4.5974 Iteration: 112; Percent complete: 2.8%; Average loss: 4.4283 Iteration: 113; Percent complete: 2.8%; Average loss: 4.2432 Iteration: 114; Percent complete: 2.9%; Average loss: 4.3201 Iteration: 115; Percent complete: 2.9%; Average loss: 4.4858 Iteration: 116; Percent complete: 2.9%; Average loss: 4.2364 Iteration: 117; Percent complete: 2.9%; Average loss: 4.4088 Iteration: 118; Percent complete: 2.9%; Average loss: 4.4584 Iteration: 119; Percent complete: 3.0%; Average loss: 4.2036 Iteration: 120; Percent complete: 3.0%; Average loss: 4.1645 Iteration: 121; Percent complete: 3.0%; Average loss: 4.1304 Iteration: 122; Percent complete: 3.0%; Average loss: 4.2270 Iteration: 123; Percent complete: 3.1%; Average loss: 4.2839 Iteration: 124; Percent complete: 3.1%; Average loss: 4.4085 Iteration: 125; Percent complete: 3.1%; Average loss: 4.1175 Iteration: 126; Percent complete: 3.1%; Average loss: 4.2625 Iteration: 127; Percent complete: 3.2%; Average loss: 4.3785 Iteration: 128; Percent complete: 3.2%; Average loss: 4.3612 Iteration: 129; Percent complete: 3.2%; Average loss: 4.3149 Iteration: 130; Percent complete: 3.2%; Average loss: 4.2489 Iteration: 131; Percent complete: 3.3%; Average loss: 4.2136 Iteration: 132; Percent complete: 3.3%; Average loss: 4.3852 Iteration: 133; Percent complete: 3.3%; Average loss: 4.3666 Iteration: 134; Percent complete: 3.4%; Average loss: 4.3188 Iteration: 135; Percent complete: 3.4%; Average loss: 4.1183 Iteration: 136; Percent complete: 3.4%; Average loss: 4.6119 Iteration: 137; Percent complete: 3.4%; Average loss: 4.3853 Iteration: 138; Percent complete: 3.5%; Average loss: 4.1454 Iteration: 139; Percent complete: 3.5%; Average loss: 3.9775 Iteration: 140; Percent complete: 3.5%; Average loss: 4.2327 Iteration: 141; Percent complete: 3.5%; Average loss: 4.2128 Iteration: 142; Percent complete: 3.5%; Average loss: 4.1233 Iteration: 143; Percent complete: 3.6%; Average loss: 4.2684 Iteration: 144; Percent complete: 3.6%; Average loss: 4.2873 Iteration: 145; Percent complete: 3.6%; Average loss: 4.2775 Iteration: 146; Percent complete: 3.6%; Average loss: 4.3609 Iteration: 147; Percent complete: 3.7%; Average loss: 4.2381 Iteration: 148; Percent complete: 3.7%; Average loss: 4.3620 Iteration: 149; Percent complete: 3.7%; Average loss: 4.2392 Iteration: 150; Percent complete: 3.8%; Average loss: 4.3360 Iteration: 151; Percent complete: 3.8%; Average loss: 4.2176 Iteration: 152; Percent complete: 3.8%; Average loss: 4.2107 Iteration: 153; Percent complete: 3.8%; Average loss: 4.1726 Iteration: 154; Percent complete: 3.9%; Average loss: 4.2341 Iteration: 155; Percent complete: 3.9%; Average loss: 4.3721 Iteration: 156; Percent complete: 3.9%; Average loss: 4.3260 Iteration: 157; Percent complete: 3.9%; Average loss: 4.1872 Iteration: 158; Percent complete: 4.0%; Average loss: 4.1366 Iteration: 159; Percent complete: 4.0%; Average loss: 4.4480 Iteration: 160; Percent complete: 4.0%; Average loss: 4.3218 Iteration: 161; Percent complete: 4.0%; Average loss: 4.2441 Iteration: 162; Percent complete: 4.0%; Average loss: 4.4961 Iteration: 163; Percent complete: 4.1%; Average loss: 4.0517 Iteration: 164; Percent complete: 4.1%; Average loss: 4.3145 Iteration: 165; Percent complete: 4.1%; Average loss: 4.1128 Iteration: 166; Percent complete: 4.2%; Average loss: 4.1953 Iteration: 167; Percent complete: 4.2%; Average loss: 4.2139 Iteration: 168; Percent complete: 4.2%; Average loss: 4.3889 Iteration: 169; Percent complete: 4.2%; Average loss: 4.2688 Iteration: 170; Percent complete: 4.2%; Average loss: 4.3338 Iteration: 171; Percent complete: 4.3%; Average loss: 4.0004 Iteration: 172; Percent complete: 4.3%; Average loss: 4.1113 Iteration: 173; Percent complete: 4.3%; Average loss: 4.2388 Iteration: 174; Percent complete: 4.3%; Average loss: 3.9562 Iteration: 175; Percent complete: 4.4%; Average loss: 4.2686 Iteration: 176; Percent complete: 4.4%; Average loss: 4.3226 Iteration: 177; Percent complete: 4.4%; Average loss: 4.2844 Iteration: 178; Percent complete: 4.5%; Average loss: 4.1881 Iteration: 179; Percent complete: 4.5%; Average loss: 4.1640 Iteration: 180; Percent complete: 4.5%; Average loss: 4.1756 Iteration: 181; Percent complete: 4.5%; Average loss: 4.0146 Iteration: 182; Percent complete: 4.5%; Average loss: 4.1844 Iteration: 183; Percent complete: 4.6%; Average loss: 4.2895 Iteration: 184; Percent complete: 4.6%; Average loss: 3.9900 Iteration: 185; Percent complete: 4.6%; Average loss: 3.9624 Iteration: 186; Percent complete: 4.7%; Average loss: 4.2113 Iteration: 187; Percent complete: 4.7%; Average loss: 4.2456 Iteration: 188; Percent complete: 4.7%; Average loss: 4.4317 Iteration: 189; Percent complete: 4.7%; Average loss: 4.0182 Iteration: 190; Percent complete: 4.8%; Average loss: 3.7759 Iteration: 191; Percent complete: 4.8%; Average loss: 4.0856 Iteration: 192; Percent complete: 4.8%; Average loss: 4.2861 Iteration: 193; Percent complete: 4.8%; Average loss: 4.0885 Iteration: 194; Percent complete: 4.9%; Average loss: 4.0340 Iteration: 195; Percent complete: 4.9%; Average loss: 4.2206 Iteration: 196; Percent complete: 4.9%; Average loss: 3.8888 Iteration: 197; Percent complete: 4.9%; Average loss: 4.2600 Iteration: 198; Percent complete: 5.0%; Average loss: 4.0809 Iteration: 199; Percent complete: 5.0%; Average loss: 3.8768 Iteration: 200; Percent complete: 5.0%; Average loss: 3.9250 Iteration: 201; Percent complete: 5.0%; Average loss: 3.8987 Iteration: 202; Percent complete: 5.1%; Average loss: 4.1153 Iteration: 203; Percent complete: 5.1%; Average loss: 3.9342 Iteration: 204; Percent complete: 5.1%; Average loss: 4.1364 Iteration: 205; Percent complete: 5.1%; Average loss: 4.1015 Iteration: 206; Percent complete: 5.1%; Average loss: 4.2670 Iteration: 207; Percent complete: 5.2%; Average loss: 4.1249 Iteration: 208; Percent complete: 5.2%; Average loss: 4.1458 Iteration: 209; Percent complete: 5.2%; Average loss: 4.2433 Iteration: 210; Percent complete: 5.2%; Average loss: 4.0574 Iteration: 211; Percent complete: 5.3%; Average loss: 4.2140 Iteration: 212; Percent complete: 5.3%; Average loss: 3.8877 Iteration: 213; Percent complete: 5.3%; Average loss: 3.8573 Iteration: 214; Percent complete: 5.3%; Average loss: 4.1922 Iteration: 215; Percent complete: 5.4%; Average loss: 3.9642 Iteration: 216; Percent complete: 5.4%; Average loss: 4.3454 Iteration: 217; Percent complete: 5.4%; Average loss: 3.8712 Iteration: 218; Percent complete: 5.5%; Average loss: 4.0237 Iteration: 219; Percent complete: 5.5%; Average loss: 3.8518 Iteration: 220; Percent complete: 5.5%; Average loss: 4.0537 Iteration: 221; Percent complete: 5.5%; Average loss: 4.2142 Iteration: 222; Percent complete: 5.5%; Average loss: 3.9949 Iteration: 223; Percent complete: 5.6%; Average loss: 4.2131 Iteration: 224; Percent complete: 5.6%; Average loss: 4.0020 Iteration: 225; Percent complete: 5.6%; Average loss: 4.0625 Iteration: 226; Percent complete: 5.7%; Average loss: 4.2754 Iteration: 227; Percent complete: 5.7%; Average loss: 4.1134 Iteration: 228; Percent complete: 5.7%; Average loss: 4.2379 Iteration: 229; Percent complete: 5.7%; Average loss: 4.0155 Iteration: 230; Percent complete: 5.8%; Average loss: 4.1059 Iteration: 231; Percent complete: 5.8%; Average loss: 3.9244 Iteration: 232; Percent complete: 5.8%; Average loss: 3.9393 Iteration: 233; Percent complete: 5.8%; Average loss: 4.2402 Iteration: 234; Percent complete: 5.9%; Average loss: 3.9486 Iteration: 235; Percent complete: 5.9%; Average loss: 3.9806 Iteration: 236; Percent complete: 5.9%; Average loss: 3.9762 Iteration: 237; Percent complete: 5.9%; Average loss: 3.9739 Iteration: 238; Percent complete: 5.9%; Average loss: 3.8886 Iteration: 239; Percent complete: 6.0%; Average loss: 3.9077 Iteration: 240; Percent complete: 6.0%; Average loss: 4.1070 Iteration: 241; Percent complete: 6.0%; Average loss: 3.8079 Iteration: 242; Percent complete: 6.0%; Average loss: 3.7881 Iteration: 243; Percent complete: 6.1%; Average loss: 3.7308 Iteration: 244; Percent complete: 6.1%; Average loss: 4.2105 Iteration: 245; Percent complete: 6.1%; Average loss: 4.0443 Iteration: 246; Percent complete: 6.2%; Average loss: 4.0769 Iteration: 247; Percent complete: 6.2%; Average loss: 3.9649 Iteration: 248; Percent complete: 6.2%; Average loss: 4.0710 Iteration: 249; Percent complete: 6.2%; Average loss: 4.1007 Iteration: 250; Percent complete: 6.2%; Average loss: 3.9031 Iteration: 251; Percent complete: 6.3%; Average loss: 3.9633 Iteration: 252; Percent complete: 6.3%; Average loss: 3.8330 Iteration: 253; Percent complete: 6.3%; Average loss: 3.8499 Iteration: 254; Percent complete: 6.3%; Average loss: 4.0574 Iteration: 255; Percent complete: 6.4%; Average loss: 4.0578 Iteration: 256; Percent complete: 6.4%; Average loss: 3.7530 Iteration: 257; Percent complete: 6.4%; Average loss: 3.8102 Iteration: 258; Percent complete: 6.5%; Average loss: 3.8882 Iteration: 259; Percent complete: 6.5%; Average loss: 3.8559 Iteration: 260; Percent complete: 6.5%; Average loss: 4.0348 Iteration: 261; Percent complete: 6.5%; Average loss: 3.8406 Iteration: 262; Percent complete: 6.6%; Average loss: 3.9232 Iteration: 263; Percent complete: 6.6%; Average loss: 3.5536 Iteration: 264; Percent complete: 6.6%; Average loss: 3.9799 Iteration: 265; Percent complete: 6.6%; Average loss: 3.8437 Iteration: 266; Percent complete: 6.7%; Average loss: 4.0686 Iteration: 267; Percent complete: 6.7%; Average loss: 4.0261 Iteration: 268; Percent complete: 6.7%; Average loss: 3.9393 Iteration: 269; Percent complete: 6.7%; Average loss: 4.1778 Iteration: 270; Percent complete: 6.8%; Average loss: 3.9962 Iteration: 271; Percent complete: 6.8%; Average loss: 4.2440 Iteration: 272; Percent complete: 6.8%; Average loss: 3.8694 Iteration: 273; Percent complete: 6.8%; Average loss: 3.9737 Iteration: 274; Percent complete: 6.9%; Average loss: 3.9939 Iteration: 275; Percent complete: 6.9%; Average loss: 3.8562 Iteration: 276; Percent complete: 6.9%; Average loss: 3.7607 Iteration: 277; Percent complete: 6.9%; Average loss: 4.0315 Iteration: 278; Percent complete: 7.0%; Average loss: 3.9953 Iteration: 279; Percent complete: 7.0%; Average loss: 3.7730 Iteration: 280; Percent complete: 7.0%; Average loss: 3.8810 Iteration: 281; Percent complete: 7.0%; Average loss: 3.8155 Iteration: 282; Percent complete: 7.0%; Average loss: 3.7949 Iteration: 283; Percent complete: 7.1%; Average loss: 4.0129 Iteration: 284; Percent complete: 7.1%; Average loss: 3.9393 Iteration: 285; Percent complete: 7.1%; Average loss: 3.9112 Iteration: 286; Percent complete: 7.1%; Average loss: 4.2953 Iteration: 287; Percent complete: 7.2%; Average loss: 3.9629 Iteration: 288; Percent complete: 7.2%; Average loss: 4.0430 Iteration: 289; Percent complete: 7.2%; Average loss: 3.7229 Iteration: 290; Percent complete: 7.2%; Average loss: 3.6630 Iteration: 291; Percent complete: 7.3%; Average loss: 4.1357 Iteration: 292; Percent complete: 7.3%; Average loss: 3.6125 Iteration: 293; Percent complete: 7.3%; Average loss: 4.0443 Iteration: 294; Percent complete: 7.3%; Average loss: 3.8308 Iteration: 295; Percent complete: 7.4%; Average loss: 3.8286 Iteration: 296; Percent complete: 7.4%; Average loss: 3.7475 Iteration: 297; Percent complete: 7.4%; Average loss: 4.0241 Iteration: 298; Percent complete: 7.4%; Average loss: 3.8660 Iteration: 299; Percent complete: 7.5%; Average loss: 4.0096 Iteration: 300; Percent complete: 7.5%; Average loss: 3.7442 Iteration: 301; Percent complete: 7.5%; Average loss: 3.8135 Iteration: 302; Percent complete: 7.5%; Average loss: 3.9159 Iteration: 303; Percent complete: 7.6%; Average loss: 3.9905 Iteration: 304; Percent complete: 7.6%; Average loss: 4.1652 Iteration: 305; Percent complete: 7.6%; Average loss: 3.8820 Iteration: 306; Percent complete: 7.6%; Average loss: 4.0256 Iteration: 307; Percent complete: 7.7%; Average loss: 3.7905 Iteration: 308; Percent complete: 7.7%; Average loss: 3.6512 Iteration: 309; Percent complete: 7.7%; Average loss: 3.8253 Iteration: 310; Percent complete: 7.8%; Average loss: 3.7619 Iteration: 311; Percent complete: 7.8%; Average loss: 3.8004 Iteration: 312; Percent complete: 7.8%; Average loss: 3.9631 Iteration: 313; Percent complete: 7.8%; Average loss: 3.8306 Iteration: 314; Percent complete: 7.8%; Average loss: 3.6368 Iteration: 315; Percent complete: 7.9%; Average loss: 3.7152 Iteration: 316; Percent complete: 7.9%; Average loss: 4.1167 Iteration: 317; Percent complete: 7.9%; Average loss: 4.0216 Iteration: 318; Percent complete: 8.0%; Average loss: 3.8053 Iteration: 319; Percent complete: 8.0%; Average loss: 3.9569 Iteration: 320; Percent complete: 8.0%; Average loss: 3.8670 Iteration: 321; Percent complete: 8.0%; Average loss: 4.1313 Iteration: 322; Percent complete: 8.1%; Average loss: 3.9546 Iteration: 323; Percent complete: 8.1%; Average loss: 3.8761 Iteration: 324; Percent complete: 8.1%; Average loss: 3.7466 Iteration: 325; Percent complete: 8.1%; Average loss: 3.9596 Iteration: 326; Percent complete: 8.2%; Average loss: 4.0572 Iteration: 327; Percent complete: 8.2%; Average loss: 3.7388 Iteration: 328; Percent complete: 8.2%; Average loss: 3.8359 Iteration: 329; Percent complete: 8.2%; Average loss: 4.0262 Iteration: 330; Percent complete: 8.2%; Average loss: 3.9726 Iteration: 331; Percent complete: 8.3%; Average loss: 3.7785 Iteration: 332; Percent complete: 8.3%; Average loss: 3.9266 Iteration: 333; Percent complete: 8.3%; Average loss: 3.7340 Iteration: 334; Percent complete: 8.3%; Average loss: 3.9022 Iteration: 335; Percent complete: 8.4%; Average loss: 4.1685 Iteration: 336; Percent complete: 8.4%; Average loss: 3.6582 Iteration: 337; Percent complete: 8.4%; Average loss: 3.3540 Iteration: 338; Percent complete: 8.5%; Average loss: 4.1542 Iteration: 339; Percent complete: 8.5%; Average loss: 4.0613 Iteration: 340; Percent complete: 8.5%; Average loss: 3.8305 Iteration: 341; Percent complete: 8.5%; Average loss: 4.1509 Iteration: 342; Percent complete: 8.6%; Average loss: 3.7823 Iteration: 343; Percent complete: 8.6%; Average loss: 4.0556 Iteration: 344; Percent complete: 8.6%; Average loss: 4.3185 Iteration: 345; Percent complete: 8.6%; Average loss: 3.7630 Iteration: 346; Percent complete: 8.6%; Average loss: 3.8995 Iteration: 347; Percent complete: 8.7%; Average loss: 3.9550 Iteration: 348; Percent complete: 8.7%; Average loss: 3.8181 Iteration: 349; Percent complete: 8.7%; Average loss: 3.8723 Iteration: 350; Percent complete: 8.8%; Average loss: 3.7024 Iteration: 351; Percent complete: 8.8%; Average loss: 3.7938 Iteration: 352; Percent complete: 8.8%; Average loss: 3.9292 Iteration: 353; Percent complete: 8.8%; Average loss: 3.6309 Iteration: 354; Percent complete: 8.8%; Average loss: 3.6424 Iteration: 355; Percent complete: 8.9%; Average loss: 3.5195 Iteration: 356; Percent complete: 8.9%; Average loss: 4.0658 Iteration: 357; Percent complete: 8.9%; Average loss: 3.8018 Iteration: 358; Percent complete: 8.9%; Average loss: 3.7596 Iteration: 359; Percent complete: 9.0%; Average loss: 3.8795 Iteration: 360; Percent complete: 9.0%; Average loss: 3.8875 Iteration: 361; Percent complete: 9.0%; Average loss: 4.0665 Iteration: 362; Percent complete: 9.0%; Average loss: 3.7955 Iteration: 363; Percent complete: 9.1%; Average loss: 3.9961 Iteration: 364; Percent complete: 9.1%; Average loss: 3.7833 Iteration: 365; Percent complete: 9.1%; Average loss: 3.8459 Iteration: 366; Percent complete: 9.2%; Average loss: 3.7406 Iteration: 367; Percent complete: 9.2%; Average loss: 3.8552 Iteration: 368; Percent complete: 9.2%; Average loss: 4.0255 Iteration: 369; Percent complete: 9.2%; Average loss: 3.9054 Iteration: 370; Percent complete: 9.2%; Average loss: 3.8640 Iteration: 371; Percent complete: 9.3%; Average loss: 3.9815 Iteration: 372; Percent complete: 9.3%; Average loss: 3.6711 Iteration: 373; Percent complete: 9.3%; Average loss: 3.5774 Iteration: 374; Percent complete: 9.3%; Average loss: 3.8988 Iteration: 375; Percent complete: 9.4%; Average loss: 3.6702 Iteration: 376; Percent complete: 9.4%; Average loss: 3.7317 Iteration: 377; Percent complete: 9.4%; Average loss: 3.7711 Iteration: 378; Percent complete: 9.4%; Average loss: 3.7720 Iteration: 379; Percent complete: 9.5%; Average loss: 3.9081 Iteration: 380; Percent complete: 9.5%; Average loss: 3.9314 Iteration: 381; Percent complete: 9.5%; Average loss: 3.8434 Iteration: 382; Percent complete: 9.6%; Average loss: 4.0779 Iteration: 383; Percent complete: 9.6%; Average loss: 3.8102 Iteration: 384; Percent complete: 9.6%; Average loss: 3.7998 Iteration: 385; Percent complete: 9.6%; Average loss: 3.7051 Iteration: 386; Percent complete: 9.7%; Average loss: 3.6798 Iteration: 387; Percent complete: 9.7%; Average loss: 3.7164 Iteration: 388; Percent complete: 9.7%; Average loss: 3.7804 Iteration: 389; Percent complete: 9.7%; Average loss: 3.9782 Iteration: 390; Percent complete: 9.8%; Average loss: 3.6553 Iteration: 391; Percent complete: 9.8%; Average loss: 3.4807 Iteration: 392; Percent complete: 9.8%; Average loss: 3.7770 Iteration: 393; Percent complete: 9.8%; Average loss: 3.7657 Iteration: 394; Percent complete: 9.8%; Average loss: 3.8298 Iteration: 395; Percent complete: 9.9%; Average loss: 3.8905 Iteration: 396; Percent complete: 9.9%; Average loss: 3.8507 Iteration: 397; Percent complete: 9.9%; Average loss: 3.8403 Iteration: 398; Percent complete: 10.0%; Average loss: 3.6440 Iteration: 399; Percent complete: 10.0%; Average loss: 3.8997 Iteration: 400; Percent complete: 10.0%; Average loss: 3.7494 Iteration: 401; Percent complete: 10.0%; Average loss: 3.8100 Iteration: 402; Percent complete: 10.1%; Average loss: 3.8567 Iteration: 403; Percent complete: 10.1%; Average loss: 3.8611 Iteration: 404; Percent complete: 10.1%; Average loss: 3.9675 Iteration: 405; Percent complete: 10.1%; Average loss: 3.5882 Iteration: 406; Percent complete: 10.2%; Average loss: 3.6233 Iteration: 407; Percent complete: 10.2%; Average loss: 4.0500 Iteration: 408; Percent complete: 10.2%; Average loss: 3.8549 Iteration: 409; Percent complete: 10.2%; Average loss: 3.8154 Iteration: 410; Percent complete: 10.2%; Average loss: 4.0185 Iteration: 411; Percent complete: 10.3%; Average loss: 3.8470 Iteration: 412; Percent complete: 10.3%; Average loss: 3.5470 Iteration: 413; Percent complete: 10.3%; Average loss: 3.8618 Iteration: 414; Percent complete: 10.3%; Average loss: 3.6207 Iteration: 415; Percent complete: 10.4%; Average loss: 3.7447 Iteration: 416; Percent complete: 10.4%; Average loss: 3.8059 Iteration: 417; Percent complete: 10.4%; Average loss: 3.6328 Iteration: 418; Percent complete: 10.4%; Average loss: 3.9340 Iteration: 419; Percent complete: 10.5%; Average loss: 3.4518 Iteration: 420; Percent complete: 10.5%; Average loss: 3.7046 Iteration: 421; Percent complete: 10.5%; Average loss: 3.6300 Iteration: 422; Percent complete: 10.5%; Average loss: 3.8149 Iteration: 423; Percent complete: 10.6%; Average loss: 3.7812 Iteration: 424; Percent complete: 10.6%; Average loss: 3.9664 Iteration: 425; Percent complete: 10.6%; Average loss: 3.7314 Iteration: 426; Percent complete: 10.7%; Average loss: 3.7925 Iteration: 427; Percent complete: 10.7%; Average loss: 3.6559 Iteration: 428; Percent complete: 10.7%; Average loss: 4.0024 Iteration: 429; Percent complete: 10.7%; Average loss: 3.5138 Iteration: 430; Percent complete: 10.8%; Average loss: 3.5619 Iteration: 431; Percent complete: 10.8%; Average loss: 3.9069 Iteration: 432; Percent complete: 10.8%; Average loss: 3.7957 Iteration: 433; Percent complete: 10.8%; Average loss: 3.5811 Iteration: 434; Percent complete: 10.8%; Average loss: 3.9546 Iteration: 435; Percent complete: 10.9%; Average loss: 3.8340 Iteration: 436; Percent complete: 10.9%; Average loss: 3.9049 Iteration: 437; Percent complete: 10.9%; Average loss: 3.7374 Iteration: 438; Percent complete: 10.9%; Average loss: 3.9640 Iteration: 439; Percent complete: 11.0%; Average loss: 3.7117 Iteration: 440; Percent complete: 11.0%; Average loss: 4.1720 Iteration: 441; Percent complete: 11.0%; Average loss: 3.7337 Iteration: 442; Percent complete: 11.1%; Average loss: 3.8388 Iteration: 443; Percent complete: 11.1%; Average loss: 3.9101 Iteration: 444; Percent complete: 11.1%; Average loss: 3.8175 Iteration: 445; Percent complete: 11.1%; Average loss: 3.7405 Iteration: 446; Percent complete: 11.2%; Average loss: 3.5572 Iteration: 447; Percent complete: 11.2%; Average loss: 3.7945 Iteration: 448; Percent complete: 11.2%; Average loss: 3.6710 Iteration: 449; Percent complete: 11.2%; Average loss: 3.7951 Iteration: 450; Percent complete: 11.2%; Average loss: 3.4623 Iteration: 451; Percent complete: 11.3%; Average loss: 3.6962 Iteration: 452; Percent complete: 11.3%; Average loss: 3.7401 Iteration: 453; Percent complete: 11.3%; Average loss: 3.6331 Iteration: 454; Percent complete: 11.3%; Average loss: 3.8527 Iteration: 455; Percent complete: 11.4%; Average loss: 3.8341 Iteration: 456; Percent complete: 11.4%; Average loss: 3.8430 Iteration: 457; Percent complete: 11.4%; Average loss: 3.5917 Iteration: 458; Percent complete: 11.5%; Average loss: 3.7264 Iteration: 459; Percent complete: 11.5%; Average loss: 3.5205 Iteration: 460; Percent complete: 11.5%; Average loss: 3.6834 Iteration: 461; Percent complete: 11.5%; Average loss: 3.8634 Iteration: 462; Percent complete: 11.6%; Average loss: 3.8123 Iteration: 463; Percent complete: 11.6%; Average loss: 3.6960 Iteration: 464; Percent complete: 11.6%; Average loss: 3.6785 Iteration: 465; Percent complete: 11.6%; Average loss: 3.7995 Iteration: 466; Percent complete: 11.7%; Average loss: 3.8850 Iteration: 467; Percent complete: 11.7%; Average loss: 3.8932 Iteration: 468; Percent complete: 11.7%; Average loss: 3.7855 Iteration: 469; Percent complete: 11.7%; Average loss: 3.7544 Iteration: 470; Percent complete: 11.8%; Average loss: 3.6478 Iteration: 471; Percent complete: 11.8%; Average loss: 3.8241 Iteration: 472; Percent complete: 11.8%; Average loss: 3.7294 Iteration: 473; Percent complete: 11.8%; Average loss: 3.8456 Iteration: 474; Percent complete: 11.8%; Average loss: 3.6006 Iteration: 475; Percent complete: 11.9%; Average loss: 3.7221 Iteration: 476; Percent complete: 11.9%; Average loss: 3.5453 Iteration: 477; Percent complete: 11.9%; Average loss: 3.9270 Iteration: 478; Percent complete: 11.9%; Average loss: 3.5625 Iteration: 479; Percent complete: 12.0%; Average loss: 3.7414 Iteration: 480; Percent complete: 12.0%; Average loss: 3.6768 Iteration: 481; Percent complete: 12.0%; Average loss: 3.7685 Iteration: 482; Percent complete: 12.0%; Average loss: 3.7571 Iteration: 483; Percent complete: 12.1%; Average loss: 3.8020 Iteration: 484; Percent complete: 12.1%; Average loss: 3.7843 Iteration: 485; Percent complete: 12.1%; Average loss: 3.7877 Iteration: 486; Percent complete: 12.2%; Average loss: 3.7315 Iteration: 487; Percent complete: 12.2%; Average loss: 3.8302 Iteration: 488; Percent complete: 12.2%; Average loss: 3.5811 Iteration: 489; Percent complete: 12.2%; Average loss: 3.8118 Iteration: 490; Percent complete: 12.2%; Average loss: 3.5098 Iteration: 491; Percent complete: 12.3%; Average loss: 3.9214 Iteration: 492; Percent complete: 12.3%; Average loss: 3.6370 Iteration: 493; Percent complete: 12.3%; Average loss: 3.8595 Iteration: 494; Percent complete: 12.3%; Average loss: 3.7254 Iteration: 495; Percent complete: 12.4%; Average loss: 3.4986 Iteration: 496; Percent complete: 12.4%; Average loss: 3.6083 Iteration: 497; Percent complete: 12.4%; Average loss: 3.6335 Iteration: 498; Percent complete: 12.4%; Average loss: 3.6884 Iteration: 499; Percent complete: 12.5%; Average loss: 4.0773 Iteration: 500; Percent complete: 12.5%; Average loss: 3.7478 Iteration: 501; Percent complete: 12.5%; Average loss: 3.8107 Iteration: 502; Percent complete: 12.6%; Average loss: 3.7359 Iteration: 503; Percent complete: 12.6%; Average loss: 3.9864 Iteration: 504; Percent complete: 12.6%; Average loss: 3.5014 Iteration: 505; Percent complete: 12.6%; Average loss: 3.6453 Iteration: 506; Percent complete: 12.7%; Average loss: 3.7674 Iteration: 507; Percent complete: 12.7%; Average loss: 3.7574 Iteration: 508; Percent complete: 12.7%; Average loss: 3.6990 Iteration: 509; Percent complete: 12.7%; Average loss: 3.9186 Iteration: 510; Percent complete: 12.8%; Average loss: 3.6265 Iteration: 511; Percent complete: 12.8%; Average loss: 3.7865 Iteration: 512; Percent complete: 12.8%; Average loss: 3.7743 Iteration: 513; Percent complete: 12.8%; Average loss: 3.9047 Iteration: 514; Percent complete: 12.8%; Average loss: 3.6243 Iteration: 515; Percent complete: 12.9%; Average loss: 3.8131 Iteration: 516; Percent complete: 12.9%; Average loss: 3.9192 Iteration: 517; Percent complete: 12.9%; Average loss: 3.9225 Iteration: 518; Percent complete: 13.0%; Average loss: 3.5610 Iteration: 519; Percent complete: 13.0%; Average loss: 3.6553 Iteration: 520; Percent complete: 13.0%; Average loss: 3.6668 Iteration: 521; Percent complete: 13.0%; Average loss: 3.6546 Iteration: 522; Percent complete: 13.1%; Average loss: 3.5540 Iteration: 523; Percent complete: 13.1%; Average loss: 3.7695 Iteration: 524; Percent complete: 13.1%; Average loss: 3.7110 Iteration: 525; Percent complete: 13.1%; Average loss: 3.8481 Iteration: 526; Percent complete: 13.2%; Average loss: 3.5886 Iteration: 527; Percent complete: 13.2%; Average loss: 3.6159 Iteration: 528; Percent complete: 13.2%; Average loss: 4.0567 Iteration: 529; Percent complete: 13.2%; Average loss: 3.5679 Iteration: 530; Percent complete: 13.2%; Average loss: 3.6101 Iteration: 531; Percent complete: 13.3%; Average loss: 3.6313 Iteration: 532; Percent complete: 13.3%; Average loss: 3.5940 Iteration: 533; Percent complete: 13.3%; Average loss: 3.6249 Iteration: 534; Percent complete: 13.4%; Average loss: 3.4456 Iteration: 535; Percent complete: 13.4%; Average loss: 3.3703 Iteration: 536; Percent complete: 13.4%; Average loss: 3.7733 Iteration: 537; Percent complete: 13.4%; Average loss: 3.5682 Iteration: 538; Percent complete: 13.5%; Average loss: 3.5885 Iteration: 539; Percent complete: 13.5%; Average loss: 3.6478 Iteration: 540; Percent complete: 13.5%; Average loss: 3.6166 Iteration: 541; Percent complete: 13.5%; Average loss: 3.6276 Iteration: 542; Percent complete: 13.6%; Average loss: 3.6240 Iteration: 543; Percent complete: 13.6%; Average loss: 3.8882 Iteration: 544; Percent complete: 13.6%; Average loss: 3.7211 Iteration: 545; Percent complete: 13.6%; Average loss: 3.9566 Iteration: 546; Percent complete: 13.7%; Average loss: 3.8454 Iteration: 547; Percent complete: 13.7%; Average loss: 3.8862 Iteration: 548; Percent complete: 13.7%; Average loss: 3.6287 Iteration: 549; Percent complete: 13.7%; Average loss: 3.7825 Iteration: 550; Percent complete: 13.8%; Average loss: 3.9501 Iteration: 551; Percent complete: 13.8%; Average loss: 3.7419 Iteration: 552; Percent complete: 13.8%; Average loss: 3.6717 Iteration: 553; Percent complete: 13.8%; Average loss: 3.6089 Iteration: 554; Percent complete: 13.9%; Average loss: 3.6275 Iteration: 555; Percent complete: 13.9%; Average loss: 3.8244 Iteration: 556; Percent complete: 13.9%; Average loss: 3.8908 Iteration: 557; Percent complete: 13.9%; Average loss: 3.5472 Iteration: 558; Percent complete: 14.0%; Average loss: 3.6208 Iteration: 559; Percent complete: 14.0%; Average loss: 3.6158 Iteration: 560; Percent complete: 14.0%; Average loss: 3.7802 Iteration: 561; Percent complete: 14.0%; Average loss: 3.6415 Iteration: 562; Percent complete: 14.1%; Average loss: 3.5270 Iteration: 563; Percent complete: 14.1%; Average loss: 3.6744 Iteration: 564; Percent complete: 14.1%; Average loss: 3.7359 Iteration: 565; Percent complete: 14.1%; Average loss: 3.5647 Iteration: 566; Percent complete: 14.1%; Average loss: 3.6676 Iteration: 567; Percent complete: 14.2%; Average loss: 3.6328 Iteration: 568; Percent complete: 14.2%; Average loss: 3.5852 Iteration: 569; Percent complete: 14.2%; Average loss: 3.7258 Iteration: 570; Percent complete: 14.2%; Average loss: 3.4700 Iteration: 571; Percent complete: 14.3%; Average loss: 3.7474 Iteration: 572; Percent complete: 14.3%; Average loss: 3.7386 Iteration: 573; Percent complete: 14.3%; Average loss: 3.5689 Iteration: 574; Percent complete: 14.3%; Average loss: 3.5057 Iteration: 575; Percent complete: 14.4%; Average loss: 3.6879 Iteration: 576; Percent complete: 14.4%; Average loss: 3.9881 Iteration: 577; Percent complete: 14.4%; Average loss: 3.7762 Iteration: 578; Percent complete: 14.4%; Average loss: 3.5596 Iteration: 579; Percent complete: 14.5%; Average loss: 3.6432 Iteration: 580; Percent complete: 14.5%; Average loss: 3.7095 Iteration: 581; Percent complete: 14.5%; Average loss: 3.4974 Iteration: 582; Percent complete: 14.5%; Average loss: 3.6194 Iteration: 583; Percent complete: 14.6%; Average loss: 3.6745 Iteration: 584; Percent complete: 14.6%; Average loss: 3.5472 Iteration: 585; Percent complete: 14.6%; Average loss: 3.7347 Iteration: 586; Percent complete: 14.6%; Average loss: 3.7196 Iteration: 587; Percent complete: 14.7%; Average loss: 3.5192 Iteration: 588; Percent complete: 14.7%; Average loss: 3.7240 Iteration: 589; Percent complete: 14.7%; Average loss: 3.6266 Iteration: 590; Percent complete: 14.8%; Average loss: 3.5615 Iteration: 591; Percent complete: 14.8%; Average loss: 3.5696 Iteration: 592; Percent complete: 14.8%; Average loss: 3.5449 Iteration: 593; Percent complete: 14.8%; Average loss: 3.7277 Iteration: 594; Percent complete: 14.8%; Average loss: 3.6401 Iteration: 595; Percent complete: 14.9%; Average loss: 3.5490 Iteration: 596; Percent complete: 14.9%; Average loss: 3.7947 Iteration: 597; Percent complete: 14.9%; Average loss: 3.7022 Iteration: 598; Percent complete: 14.9%; Average loss: 3.7214 Iteration: 599; Percent complete: 15.0%; Average loss: 3.8626 Iteration: 600; Percent complete: 15.0%; Average loss: 3.8217 Iteration: 601; Percent complete: 15.0%; Average loss: 3.7147 Iteration: 602; Percent complete: 15.0%; Average loss: 3.6444 Iteration: 603; Percent complete: 15.1%; Average loss: 3.4678 Iteration: 604; Percent complete: 15.1%; Average loss: 3.9698 Iteration: 605; Percent complete: 15.1%; Average loss: 3.9470 Iteration: 606; Percent complete: 15.2%; Average loss: 3.6821 Iteration: 607; Percent complete: 15.2%; Average loss: 3.5171 Iteration: 608; Percent complete: 15.2%; Average loss: 3.4749 Iteration: 609; Percent complete: 15.2%; Average loss: 3.4585 Iteration: 610; Percent complete: 15.2%; Average loss: 3.7682 Iteration: 611; Percent complete: 15.3%; Average loss: 3.6267 Iteration: 612; Percent complete: 15.3%; Average loss: 3.7376 Iteration: 613; Percent complete: 15.3%; Average loss: 3.4054 Iteration: 614; Percent complete: 15.3%; Average loss: 3.6097 Iteration: 615; Percent complete: 15.4%; Average loss: 3.7161 Iteration: 616; Percent complete: 15.4%; Average loss: 3.8115 Iteration: 617; Percent complete: 15.4%; Average loss: 3.7294 Iteration: 618; Percent complete: 15.4%; Average loss: 3.7705 Iteration: 619; Percent complete: 15.5%; Average loss: 3.7477 Iteration: 620; Percent complete: 15.5%; Average loss: 3.4717 Iteration: 621; Percent complete: 15.5%; Average loss: 3.9391 Iteration: 622; Percent complete: 15.6%; Average loss: 3.2658 Iteration: 623; Percent complete: 15.6%; Average loss: 3.6944 Iteration: 624; Percent complete: 15.6%; Average loss: 3.7210 Iteration: 625; Percent complete: 15.6%; Average loss: 3.7747 Iteration: 626; Percent complete: 15.7%; Average loss: 3.7241 Iteration: 627; Percent complete: 15.7%; Average loss: 3.6737 Iteration: 628; Percent complete: 15.7%; Average loss: 3.4522 Iteration: 629; Percent complete: 15.7%; Average loss: 3.6676 Iteration: 630; Percent complete: 15.8%; Average loss: 3.6356 Iteration: 631; Percent complete: 15.8%; Average loss: 3.8671 Iteration: 632; Percent complete: 15.8%; Average loss: 3.6026 Iteration: 633; Percent complete: 15.8%; Average loss: 3.8175 Iteration: 634; Percent complete: 15.8%; Average loss: 3.7781 Iteration: 635; Percent complete: 15.9%; Average loss: 4.0696 Iteration: 636; Percent complete: 15.9%; Average loss: 3.3310 Iteration: 637; Percent complete: 15.9%; Average loss: 3.5977 Iteration: 638; Percent complete: 16.0%; Average loss: 3.7075 Iteration: 639; Percent complete: 16.0%; Average loss: 3.7428 Iteration: 640; Percent complete: 16.0%; Average loss: 3.8172 Iteration: 641; Percent complete: 16.0%; Average loss: 3.3586 Iteration: 642; Percent complete: 16.1%; Average loss: 3.8349 Iteration: 643; Percent complete: 16.1%; Average loss: 3.5543 Iteration: 644; Percent complete: 16.1%; Average loss: 3.5500 Iteration: 645; Percent complete: 16.1%; Average loss: 3.8910 Iteration: 646; Percent complete: 16.2%; Average loss: 3.7265 Iteration: 647; Percent complete: 16.2%; Average loss: 3.8222 Iteration: 648; Percent complete: 16.2%; Average loss: 3.8266 Iteration: 649; Percent complete: 16.2%; Average loss: 3.5912 Iteration: 650; Percent complete: 16.2%; Average loss: 3.7357 Iteration: 651; Percent complete: 16.3%; Average loss: 3.5992 Iteration: 652; Percent complete: 16.3%; Average loss: 3.5254 Iteration: 653; Percent complete: 16.3%; Average loss: 3.6114 Iteration: 654; Percent complete: 16.4%; Average loss: 3.8420 Iteration: 655; Percent complete: 16.4%; Average loss: 3.8382 Iteration: 656; Percent complete: 16.4%; Average loss: 3.6502 Iteration: 657; Percent complete: 16.4%; Average loss: 3.3361 Iteration: 658; Percent complete: 16.4%; Average loss: 3.6589 Iteration: 659; Percent complete: 16.5%; Average loss: 3.4994 Iteration: 660; Percent complete: 16.5%; Average loss: 3.7002 Iteration: 661; Percent complete: 16.5%; Average loss: 3.5259 Iteration: 662; Percent complete: 16.6%; Average loss: 3.6158 Iteration: 663; Percent complete: 16.6%; Average loss: 3.6276 Iteration: 664; Percent complete: 16.6%; Average loss: 3.6294 Iteration: 665; Percent complete: 16.6%; Average loss: 4.0257 Iteration: 666; Percent complete: 16.7%; Average loss: 3.4359 Iteration: 667; Percent complete: 16.7%; Average loss: 4.0017 Iteration: 668; Percent complete: 16.7%; Average loss: 3.4498 Iteration: 669; Percent complete: 16.7%; Average loss: 3.6413 Iteration: 670; Percent complete: 16.8%; Average loss: 3.7153 Iteration: 671; Percent complete: 16.8%; Average loss: 3.5649 Iteration: 672; Percent complete: 16.8%; Average loss: 3.2042 Iteration: 673; Percent complete: 16.8%; Average loss: 3.6180 Iteration: 674; Percent complete: 16.9%; Average loss: 3.7181 Iteration: 675; Percent complete: 16.9%; Average loss: 3.7030 Iteration: 676; Percent complete: 16.9%; Average loss: 3.5175 Iteration: 677; Percent complete: 16.9%; Average loss: 3.5124 Iteration: 678; Percent complete: 17.0%; Average loss: 3.7266 Iteration: 679; Percent complete: 17.0%; Average loss: 3.6403 Iteration: 680; Percent complete: 17.0%; Average loss: 3.5616 Iteration: 681; Percent complete: 17.0%; Average loss: 3.5636 Iteration: 682; Percent complete: 17.1%; Average loss: 3.6778 Iteration: 683; Percent complete: 17.1%; Average loss: 3.8465 Iteration: 684; Percent complete: 17.1%; Average loss: 3.6176 Iteration: 685; Percent complete: 17.1%; Average loss: 3.4979 Iteration: 686; Percent complete: 17.2%; Average loss: 3.6173 Iteration: 687; Percent complete: 17.2%; Average loss: 3.6397 Iteration: 688; Percent complete: 17.2%; Average loss: 3.6163 Iteration: 689; Percent complete: 17.2%; Average loss: 3.6699 Iteration: 690; Percent complete: 17.2%; Average loss: 3.4702 Iteration: 691; Percent complete: 17.3%; Average loss: 3.5293 Iteration: 692; Percent complete: 17.3%; Average loss: 3.6893 Iteration: 693; Percent complete: 17.3%; Average loss: 3.7453 Iteration: 694; Percent complete: 17.3%; Average loss: 3.4728 Iteration: 695; Percent complete: 17.4%; Average loss: 3.5916 Iteration: 696; Percent complete: 17.4%; Average loss: 3.4288 Iteration: 697; Percent complete: 17.4%; Average loss: 3.6858 Iteration: 698; Percent complete: 17.4%; Average loss: 3.4827 Iteration: 699; Percent complete: 17.5%; Average loss: 3.6672 Iteration: 700; Percent complete: 17.5%; Average loss: 3.7087 Iteration: 701; Percent complete: 17.5%; Average loss: 3.7319 Iteration: 702; Percent complete: 17.5%; Average loss: 3.6839 Iteration: 703; Percent complete: 17.6%; Average loss: 3.9569 Iteration: 704; Percent complete: 17.6%; Average loss: 3.6692 Iteration: 705; Percent complete: 17.6%; Average loss: 3.5669 Iteration: 706; Percent complete: 17.6%; Average loss: 3.7878 Iteration: 707; Percent complete: 17.7%; Average loss: 3.7833 Iteration: 708; Percent complete: 17.7%; Average loss: 3.6311 Iteration: 709; Percent complete: 17.7%; Average loss: 3.4738 Iteration: 710; Percent complete: 17.8%; Average loss: 3.5917 Iteration: 711; Percent complete: 17.8%; Average loss: 3.7858 Iteration: 712; Percent complete: 17.8%; Average loss: 3.9772 Iteration: 713; Percent complete: 17.8%; Average loss: 3.8247 Iteration: 714; Percent complete: 17.8%; Average loss: 3.3509 Iteration: 715; Percent complete: 17.9%; Average loss: 3.5679 Iteration: 716; Percent complete: 17.9%; Average loss: 3.8249 Iteration: 717; Percent complete: 17.9%; Average loss: 3.8008 Iteration: 718; Percent complete: 17.9%; Average loss: 3.7512 Iteration: 719; Percent complete: 18.0%; Average loss: 3.5317 Iteration: 720; Percent complete: 18.0%; Average loss: 3.5849 Iteration: 721; Percent complete: 18.0%; Average loss: 3.5493 Iteration: 722; Percent complete: 18.1%; Average loss: 3.5022 Iteration: 723; Percent complete: 18.1%; Average loss: 3.4994 Iteration: 724; Percent complete: 18.1%; Average loss: 3.7937 Iteration: 725; Percent complete: 18.1%; Average loss: 3.3939 Iteration: 726; Percent complete: 18.1%; Average loss: 3.7173 Iteration: 727; Percent complete: 18.2%; Average loss: 3.3727 Iteration: 728; Percent complete: 18.2%; Average loss: 3.4259 Iteration: 729; Percent complete: 18.2%; Average loss: 3.6798 Iteration: 730; Percent complete: 18.2%; Average loss: 3.6941 Iteration: 731; Percent complete: 18.3%; Average loss: 3.6316 Iteration: 732; Percent complete: 18.3%; Average loss: 3.4120 Iteration: 733; Percent complete: 18.3%; Average loss: 3.6835 Iteration: 734; Percent complete: 18.4%; Average loss: 3.5878 Iteration: 735; Percent complete: 18.4%; Average loss: 3.5521 Iteration: 736; Percent complete: 18.4%; Average loss: 3.7905 Iteration: 737; Percent complete: 18.4%; Average loss: 3.5377 Iteration: 738; Percent complete: 18.4%; Average loss: 3.4542 Iteration: 739; Percent complete: 18.5%; Average loss: 3.8104 Iteration: 740; Percent complete: 18.5%; Average loss: 3.3739 Iteration: 741; Percent complete: 18.5%; Average loss: 3.6806 Iteration: 742; Percent complete: 18.6%; Average loss: 3.4700 Iteration: 743; Percent complete: 18.6%; Average loss: 3.6663 Iteration: 744; Percent complete: 18.6%; Average loss: 3.6564 Iteration: 745; Percent complete: 18.6%; Average loss: 3.7333 Iteration: 746; Percent complete: 18.6%; Average loss: 3.3743 Iteration: 747; Percent complete: 18.7%; Average loss: 3.6580 Iteration: 748; Percent complete: 18.7%; Average loss: 3.2829 Iteration: 749; Percent complete: 18.7%; Average loss: 3.6148 Iteration: 750; Percent complete: 18.8%; Average loss: 3.3503 Iteration: 751; Percent complete: 18.8%; Average loss: 3.5672 Iteration: 752; Percent complete: 18.8%; Average loss: 3.4417 Iteration: 753; Percent complete: 18.8%; Average loss: 3.6048 Iteration: 754; Percent complete: 18.9%; Average loss: 3.7451 Iteration: 755; Percent complete: 18.9%; Average loss: 3.5889 Iteration: 756; Percent complete: 18.9%; Average loss: 3.5798 Iteration: 757; Percent complete: 18.9%; Average loss: 3.3740 Iteration: 758; Percent complete: 18.9%; Average loss: 3.4675 Iteration: 759; Percent complete: 19.0%; Average loss: 3.6149 Iteration: 760; Percent complete: 19.0%; Average loss: 3.5936 Iteration: 761; Percent complete: 19.0%; Average loss: 3.5313 Iteration: 762; Percent complete: 19.1%; Average loss: 3.6652 Iteration: 763; Percent complete: 19.1%; Average loss: 3.5584 Iteration: 764; Percent complete: 19.1%; Average loss: 3.7265 Iteration: 765; Percent complete: 19.1%; Average loss: 3.5500 Iteration: 766; Percent complete: 19.1%; Average loss: 3.6049 Iteration: 767; Percent complete: 19.2%; Average loss: 3.5194 Iteration: 768; Percent complete: 19.2%; Average loss: 3.7463 Iteration: 769; Percent complete: 19.2%; Average loss: 3.5932 Iteration: 770; Percent complete: 19.2%; Average loss: 3.7828 Iteration: 771; Percent complete: 19.3%; Average loss: 3.5657 Iteration: 772; Percent complete: 19.3%; Average loss: 3.7906 Iteration: 773; Percent complete: 19.3%; Average loss: 3.3428 Iteration: 774; Percent complete: 19.4%; Average loss: 3.6353 Iteration: 775; Percent complete: 19.4%; Average loss: 3.4990 Iteration: 776; Percent complete: 19.4%; Average loss: 3.7521 Iteration: 777; Percent complete: 19.4%; Average loss: 3.4661 Iteration: 778; Percent complete: 19.4%; Average loss: 3.2584 Iteration: 779; Percent complete: 19.5%; Average loss: 3.4047 Iteration: 780; Percent complete: 19.5%; Average loss: 3.5483 Iteration: 781; Percent complete: 19.5%; Average loss: 3.8009 Iteration: 782; Percent complete: 19.6%; Average loss: 3.6386 Iteration: 783; Percent complete: 19.6%; Average loss: 3.5252 Iteration: 784; Percent complete: 19.6%; Average loss: 3.7724 Iteration: 785; Percent complete: 19.6%; Average loss: 3.4558 Iteration: 786; Percent complete: 19.7%; Average loss: 3.6618 Iteration: 787; Percent complete: 19.7%; Average loss: 3.5760 Iteration: 788; Percent complete: 19.7%; Average loss: 3.6717 Iteration: 789; Percent complete: 19.7%; Average loss: 3.4891 Iteration: 790; Percent complete: 19.8%; Average loss: 3.7829 Iteration: 791; Percent complete: 19.8%; Average loss: 3.7346 Iteration: 792; Percent complete: 19.8%; Average loss: 3.4341 Iteration: 793; Percent complete: 19.8%; Average loss: 3.4940 Iteration: 794; Percent complete: 19.9%; Average loss: 3.2923 Iteration: 795; Percent complete: 19.9%; Average loss: 3.9275 Iteration: 796; Percent complete: 19.9%; Average loss: 3.8697 Iteration: 797; Percent complete: 19.9%; Average loss: 3.9818 Iteration: 798; Percent complete: 20.0%; Average loss: 3.6499 Iteration: 799; Percent complete: 20.0%; Average loss: 3.4632 Iteration: 800; Percent complete: 20.0%; Average loss: 3.4319 Iteration: 801; Percent complete: 20.0%; Average loss: 3.4915 Iteration: 802; Percent complete: 20.1%; Average loss: 3.5053 Iteration: 803; Percent complete: 20.1%; Average loss: 3.5753 Iteration: 804; Percent complete: 20.1%; Average loss: 3.3738 Iteration: 805; Percent complete: 20.1%; Average loss: 3.7679 Iteration: 806; Percent complete: 20.2%; Average loss: 3.4763 Iteration: 807; Percent complete: 20.2%; Average loss: 3.7702 Iteration: 808; Percent complete: 20.2%; Average loss: 3.6004 Iteration: 809; Percent complete: 20.2%; Average loss: 3.5174 Iteration: 810; Percent complete: 20.2%; Average loss: 3.4261 Iteration: 811; Percent complete: 20.3%; Average loss: 3.6263 Iteration: 812; Percent complete: 20.3%; Average loss: 3.4460 Iteration: 813; Percent complete: 20.3%; Average loss: 3.1238 Iteration: 814; Percent complete: 20.3%; Average loss: 3.8302 Iteration: 815; Percent complete: 20.4%; Average loss: 3.6602 Iteration: 816; Percent complete: 20.4%; Average loss: 3.4283 Iteration: 817; Percent complete: 20.4%; Average loss: 3.1774 Iteration: 818; Percent complete: 20.4%; Average loss: 3.3391 Iteration: 819; Percent complete: 20.5%; Average loss: 3.6300 Iteration: 820; Percent complete: 20.5%; Average loss: 3.4515 Iteration: 821; Percent complete: 20.5%; Average loss: 3.9049 Iteration: 822; Percent complete: 20.5%; Average loss: 3.7661 Iteration: 823; Percent complete: 20.6%; Average loss: 3.7405 Iteration: 824; Percent complete: 20.6%; Average loss: 3.7097 Iteration: 825; Percent complete: 20.6%; Average loss: 3.5696 Iteration: 826; Percent complete: 20.6%; Average loss: 3.6514 Iteration: 827; Percent complete: 20.7%; Average loss: 3.6685 Iteration: 828; Percent complete: 20.7%; Average loss: 3.3546 Iteration: 829; Percent complete: 20.7%; Average loss: 3.5454 Iteration: 830; Percent complete: 20.8%; Average loss: 3.2708 Iteration: 831; Percent complete: 20.8%; Average loss: 3.4788 Iteration: 832; Percent complete: 20.8%; Average loss: 3.5330 Iteration: 833; Percent complete: 20.8%; Average loss: 3.4911 Iteration: 834; Percent complete: 20.8%; Average loss: 3.6741 Iteration: 835; Percent complete: 20.9%; Average loss: 3.2773 Iteration: 836; Percent complete: 20.9%; Average loss: 3.8069 Iteration: 837; Percent complete: 20.9%; Average loss: 3.5730 Iteration: 838; Percent complete: 20.9%; Average loss: 3.5479 Iteration: 839; Percent complete: 21.0%; Average loss: 3.5963 Iteration: 840; Percent complete: 21.0%; Average loss: 3.3429 Iteration: 841; Percent complete: 21.0%; Average loss: 3.6503 Iteration: 842; Percent complete: 21.1%; Average loss: 3.6143 Iteration: 843; Percent complete: 21.1%; Average loss: 3.5322 Iteration: 844; Percent complete: 21.1%; Average loss: 3.4805 Iteration: 845; Percent complete: 21.1%; Average loss: 3.7687 Iteration: 846; Percent complete: 21.1%; Average loss: 3.3699 Iteration: 847; Percent complete: 21.2%; Average loss: 3.1696 Iteration: 848; Percent complete: 21.2%; Average loss: 3.6961 Iteration: 849; Percent complete: 21.2%; Average loss: 3.4922 Iteration: 850; Percent complete: 21.2%; Average loss: 3.5280 Iteration: 851; Percent complete: 21.3%; Average loss: 3.5914 Iteration: 852; Percent complete: 21.3%; Average loss: 3.4138 Iteration: 853; Percent complete: 21.3%; Average loss: 3.4667 Iteration: 854; Percent complete: 21.3%; Average loss: 3.5764 Iteration: 855; Percent complete: 21.4%; Average loss: 3.6647 Iteration: 856; Percent complete: 21.4%; Average loss: 3.4723 Iteration: 857; Percent complete: 21.4%; Average loss: 3.4039 Iteration: 858; Percent complete: 21.4%; Average loss: 3.4585 Iteration: 859; Percent complete: 21.5%; Average loss: 3.4053 Iteration: 860; Percent complete: 21.5%; Average loss: 3.3563 Iteration: 861; Percent complete: 21.5%; Average loss: 3.4924 Iteration: 862; Percent complete: 21.6%; Average loss: 3.4322 Iteration: 863; Percent complete: 21.6%; Average loss: 3.7765 Iteration: 864; Percent complete: 21.6%; Average loss: 3.6390 Iteration: 865; Percent complete: 21.6%; Average loss: 3.5175 Iteration: 866; Percent complete: 21.6%; Average loss: 3.4097 Iteration: 867; Percent complete: 21.7%; Average loss: 3.7658 Iteration: 868; Percent complete: 21.7%; Average loss: 3.6425 Iteration: 869; Percent complete: 21.7%; Average loss: 3.4776 Iteration: 870; Percent complete: 21.8%; Average loss: 3.7818 Iteration: 871; Percent complete: 21.8%; Average loss: 3.6087 Iteration: 872; Percent complete: 21.8%; Average loss: 3.3046 Iteration: 873; Percent complete: 21.8%; Average loss: 3.8012 Iteration: 874; Percent complete: 21.9%; Average loss: 3.4258 Iteration: 875; Percent complete: 21.9%; Average loss: 3.5895 Iteration: 876; Percent complete: 21.9%; Average loss: 3.6561 Iteration: 877; Percent complete: 21.9%; Average loss: 3.6952 Iteration: 878; Percent complete: 21.9%; Average loss: 3.2878 Iteration: 879; Percent complete: 22.0%; Average loss: 3.1412 Iteration: 880; Percent complete: 22.0%; Average loss: 3.5888 Iteration: 881; Percent complete: 22.0%; Average loss: 3.5023 Iteration: 882; Percent complete: 22.1%; Average loss: 3.7786 Iteration: 883; Percent complete: 22.1%; Average loss: 3.5899 Iteration: 884; Percent complete: 22.1%; Average loss: 3.4941 Iteration: 885; Percent complete: 22.1%; Average loss: 3.4198 Iteration: 886; Percent complete: 22.1%; Average loss: 3.5284 Iteration: 887; Percent complete: 22.2%; Average loss: 3.7301 Iteration: 888; Percent complete: 22.2%; Average loss: 3.6178 Iteration: 889; Percent complete: 22.2%; Average loss: 3.3171 Iteration: 890; Percent complete: 22.2%; Average loss: 3.2002 Iteration: 891; Percent complete: 22.3%; Average loss: 3.7357 Iteration: 892; Percent complete: 22.3%; Average loss: 3.6440 Iteration: 893; Percent complete: 22.3%; Average loss: 3.3519 Iteration: 894; Percent complete: 22.4%; Average loss: 3.5578 Iteration: 895; Percent complete: 22.4%; Average loss: 3.1437 Iteration: 896; Percent complete: 22.4%; Average loss: 3.5193 Iteration: 897; Percent complete: 22.4%; Average loss: 3.4350 Iteration: 898; Percent complete: 22.4%; Average loss: 3.6274 Iteration: 899; Percent complete: 22.5%; Average loss: 3.2796 Iteration: 900; Percent complete: 22.5%; Average loss: 3.4592 Iteration: 901; Percent complete: 22.5%; Average loss: 3.8135 Iteration: 902; Percent complete: 22.6%; Average loss: 3.5513 Iteration: 903; Percent complete: 22.6%; Average loss: 3.4361 Iteration: 904; Percent complete: 22.6%; Average loss: 3.2885 Iteration: 905; Percent complete: 22.6%; Average loss: 3.6075 Iteration: 906; Percent complete: 22.7%; Average loss: 3.4108 Iteration: 907; Percent complete: 22.7%; Average loss: 3.4307 Iteration: 908; Percent complete: 22.7%; Average loss: 3.5935 Iteration: 909; Percent complete: 22.7%; Average loss: 3.6944 Iteration: 910; Percent complete: 22.8%; Average loss: 3.4079 Iteration: 911; Percent complete: 22.8%; Average loss: 3.5800 Iteration: 912; Percent complete: 22.8%; Average loss: 3.5584 Iteration: 913; Percent complete: 22.8%; Average loss: 3.3393 Iteration: 914; Percent complete: 22.9%; Average loss: 3.4322 Iteration: 915; Percent complete: 22.9%; Average loss: 3.6274 Iteration: 916; Percent complete: 22.9%; Average loss: 3.4609 Iteration: 917; Percent complete: 22.9%; Average loss: 3.2408 Iteration: 918; Percent complete: 22.9%; Average loss: 3.5875 Iteration: 919; Percent complete: 23.0%; Average loss: 3.7425 Iteration: 920; Percent complete: 23.0%; Average loss: 3.4865 Iteration: 921; Percent complete: 23.0%; Average loss: 3.9158 Iteration: 922; Percent complete: 23.1%; Average loss: 3.6273 Iteration: 923; Percent complete: 23.1%; Average loss: 3.4026 Iteration: 924; Percent complete: 23.1%; Average loss: 3.3530 Iteration: 925; Percent complete: 23.1%; Average loss: 3.5638 Iteration: 926; Percent complete: 23.2%; Average loss: 3.2307 Iteration: 927; Percent complete: 23.2%; Average loss: 3.5063 Iteration: 928; Percent complete: 23.2%; Average loss: 3.7098 Iteration: 929; Percent complete: 23.2%; Average loss: 3.4988 Iteration: 930; Percent complete: 23.2%; Average loss: 3.2661 Iteration: 931; Percent complete: 23.3%; Average loss: 3.4975 Iteration: 932; Percent complete: 23.3%; Average loss: 3.5500 Iteration: 933; Percent complete: 23.3%; Average loss: 3.5197 Iteration: 934; Percent complete: 23.4%; Average loss: 3.5469 Iteration: 935; Percent complete: 23.4%; Average loss: 3.3586 Iteration: 936; Percent complete: 23.4%; Average loss: 3.6767 Iteration: 937; Percent complete: 23.4%; Average loss: 3.6014 Iteration: 938; Percent complete: 23.4%; Average loss: 3.7782 Iteration: 939; Percent complete: 23.5%; Average loss: 3.3084 Iteration: 940; Percent complete: 23.5%; Average loss: 3.4524 Iteration: 941; Percent complete: 23.5%; Average loss: 3.7790 Iteration: 942; Percent complete: 23.5%; Average loss: 3.3530 Iteration: 943; Percent complete: 23.6%; Average loss: 3.4617 Iteration: 944; Percent complete: 23.6%; Average loss: 3.2788 Iteration: 945; Percent complete: 23.6%; Average loss: 3.7062 Iteration: 946; Percent complete: 23.6%; Average loss: 3.3104 Iteration: 947; Percent complete: 23.7%; Average loss: 3.5001 Iteration: 948; Percent complete: 23.7%; Average loss: 3.6347 Iteration: 949; Percent complete: 23.7%; Average loss: 3.4977 Iteration: 950; Percent complete: 23.8%; Average loss: 3.2186 Iteration: 951; Percent complete: 23.8%; Average loss: 3.5751 Iteration: 952; Percent complete: 23.8%; Average loss: 3.5213 Iteration: 953; Percent complete: 23.8%; Average loss: 3.4798 Iteration: 954; Percent complete: 23.8%; Average loss: 3.3908 Iteration: 955; Percent complete: 23.9%; Average loss: 3.4748 Iteration: 956; Percent complete: 23.9%; Average loss: 3.3893 Iteration: 957; Percent complete: 23.9%; Average loss: 3.6419 Iteration: 958; Percent complete: 23.9%; Average loss: 3.3937 Iteration: 959; Percent complete: 24.0%; Average loss: 3.4465 Iteration: 960; Percent complete: 24.0%; Average loss: 3.6125 Iteration: 961; Percent complete: 24.0%; Average loss: 3.5785 Iteration: 962; Percent complete: 24.1%; Average loss: 3.4534 Iteration: 963; Percent complete: 24.1%; Average loss: 3.3712 Iteration: 964; Percent complete: 24.1%; Average loss: 3.5364 Iteration: 965; Percent complete: 24.1%; Average loss: 3.3211 Iteration: 966; Percent complete: 24.1%; Average loss: 3.4846 Iteration: 967; Percent complete: 24.2%; Average loss: 3.8268 Iteration: 968; Percent complete: 24.2%; Average loss: 3.5259 Iteration: 969; Percent complete: 24.2%; Average loss: 3.5004 Iteration: 970; Percent complete: 24.2%; Average loss: 3.4907 Iteration: 971; Percent complete: 24.3%; Average loss: 3.5476 Iteration: 972; Percent complete: 24.3%; Average loss: 3.3797 Iteration: 973; Percent complete: 24.3%; Average loss: 3.2900 Iteration: 974; Percent complete: 24.3%; Average loss: 3.3800 Iteration: 975; Percent complete: 24.4%; Average loss: 3.5922 Iteration: 976; Percent complete: 24.4%; Average loss: 3.6576 Iteration: 977; Percent complete: 24.4%; Average loss: 3.4183 Iteration: 978; Percent complete: 24.4%; Average loss: 3.5073 Iteration: 979; Percent complete: 24.5%; Average loss: 3.7786 Iteration: 980; Percent complete: 24.5%; Average loss: 3.6999 Iteration: 981; Percent complete: 24.5%; Average loss: 3.6344 Iteration: 982; Percent complete: 24.6%; Average loss: 3.3921 Iteration: 983; Percent complete: 24.6%; Average loss: 3.4432 Iteration: 984; Percent complete: 24.6%; Average loss: 3.3590 Iteration: 985; Percent complete: 24.6%; Average loss: 3.4301 Iteration: 986; Percent complete: 24.6%; Average loss: 3.3776 Iteration: 987; Percent complete: 24.7%; Average loss: 3.2749 Iteration: 988; Percent complete: 24.7%; Average loss: 3.3413 Iteration: 989; Percent complete: 24.7%; Average loss: 3.6104 Iteration: 990; Percent complete: 24.8%; Average loss: 3.5319 Iteration: 991; Percent complete: 24.8%; Average loss: 3.8374 Iteration: 992; Percent complete: 24.8%; Average loss: 3.5099 Iteration: 993; Percent complete: 24.8%; Average loss: 3.5003 Iteration: 994; Percent complete: 24.9%; Average loss: 3.5039 Iteration: 995; Percent complete: 24.9%; Average loss: 3.2617 Iteration: 996; Percent complete: 24.9%; Average loss: 3.3440 Iteration: 997; Percent complete: 24.9%; Average loss: 3.4407 Iteration: 998; Percent complete: 24.9%; Average loss: 3.7589 Iteration: 999; Percent complete: 25.0%; Average loss: 3.3017 Iteration: 1000; Percent complete: 25.0%; Average loss: 3.2986 Iteration: 1001; Percent complete: 25.0%; Average loss: 3.7113 Iteration: 1002; Percent complete: 25.1%; Average loss: 3.3493 Iteration: 1003; Percent complete: 25.1%; Average loss: 3.4085 Iteration: 1004; Percent complete: 25.1%; Average loss: 3.4868 Iteration: 1005; Percent complete: 25.1%; Average loss: 3.6340 Iteration: 1006; Percent complete: 25.1%; Average loss: 3.3969 Iteration: 1007; Percent complete: 25.2%; Average loss: 3.3688 Iteration: 1008; Percent complete: 25.2%; Average loss: 3.4576 Iteration: 1009; Percent complete: 25.2%; Average loss: 3.4724 Iteration: 1010; Percent complete: 25.2%; Average loss: 3.3993 Iteration: 1011; Percent complete: 25.3%; Average loss: 3.4996 Iteration: 1012; Percent complete: 25.3%; Average loss: 3.5063 Iteration: 1013; Percent complete: 25.3%; Average loss: 3.3639 Iteration: 1014; Percent complete: 25.4%; Average loss: 3.4577 Iteration: 1015; Percent complete: 25.4%; Average loss: 3.4139 Iteration: 1016; Percent complete: 25.4%; Average loss: 3.4455 Iteration: 1017; Percent complete: 25.4%; Average loss: 3.2968 Iteration: 1018; Percent complete: 25.4%; Average loss: 3.6203 Iteration: 1019; Percent complete: 25.5%; Average loss: 3.5772 Iteration: 1020; Percent complete: 25.5%; Average loss: 3.3508 Iteration: 1021; Percent complete: 25.5%; Average loss: 3.6650 Iteration: 1022; Percent complete: 25.6%; Average loss: 3.5362 Iteration: 1023; Percent complete: 25.6%; Average loss: 3.3856 Iteration: 1024; Percent complete: 25.6%; Average loss: 3.3205 Iteration: 1025; Percent complete: 25.6%; Average loss: 3.7494 Iteration: 1026; Percent complete: 25.7%; Average loss: 3.6776 Iteration: 1027; Percent complete: 25.7%; Average loss: 3.6199 Iteration: 1028; Percent complete: 25.7%; Average loss: 3.3957 Iteration: 1029; Percent complete: 25.7%; Average loss: 3.5690 Iteration: 1030; Percent complete: 25.8%; Average loss: 3.4110 Iteration: 1031; Percent complete: 25.8%; Average loss: 3.5122 Iteration: 1032; Percent complete: 25.8%; Average loss: 3.6170 Iteration: 1033; Percent complete: 25.8%; Average loss: 3.6075 Iteration: 1034; Percent complete: 25.9%; Average loss: 3.5973 Iteration: 1035; Percent complete: 25.9%; Average loss: 3.6152 Iteration: 1036; Percent complete: 25.9%; Average loss: 3.2950 Iteration: 1037; Percent complete: 25.9%; Average loss: 3.6452 Iteration: 1038; Percent complete: 25.9%; Average loss: 3.1738 Iteration: 1039; Percent complete: 26.0%; Average loss: 3.4615 Iteration: 1040; Percent complete: 26.0%; Average loss: 3.4608 Iteration: 1041; Percent complete: 26.0%; Average loss: 3.4886 Iteration: 1042; Percent complete: 26.1%; Average loss: 3.4307 Iteration: 1043; Percent complete: 26.1%; Average loss: 3.4928 Iteration: 1044; Percent complete: 26.1%; Average loss: 3.2097 Iteration: 1045; Percent complete: 26.1%; Average loss: 3.4712 Iteration: 1046; Percent complete: 26.2%; Average loss: 3.4891 Iteration: 1047; Percent complete: 26.2%; Average loss: 3.4679 Iteration: 1048; Percent complete: 26.2%; Average loss: 3.4566 Iteration: 1049; Percent complete: 26.2%; Average loss: 3.3165 Iteration: 1050; Percent complete: 26.2%; Average loss: 3.3166 Iteration: 1051; Percent complete: 26.3%; Average loss: 3.5116 Iteration: 1052; Percent complete: 26.3%; Average loss: 3.3814 Iteration: 1053; Percent complete: 26.3%; Average loss: 3.3848 Iteration: 1054; Percent complete: 26.4%; Average loss: 3.5774 Iteration: 1055; Percent complete: 26.4%; Average loss: 3.3878 Iteration: 1056; Percent complete: 26.4%; Average loss: 3.4420 Iteration: 1057; Percent complete: 26.4%; Average loss: 3.3082 Iteration: 1058; Percent complete: 26.5%; Average loss: 3.6419 Iteration: 1059; Percent complete: 26.5%; Average loss: 3.2613 Iteration: 1060; Percent complete: 26.5%; Average loss: 3.6162 Iteration: 1061; Percent complete: 26.5%; Average loss: 3.2279 Iteration: 1062; Percent complete: 26.6%; Average loss: 3.4647 Iteration: 1063; Percent complete: 26.6%; Average loss: 3.2291 Iteration: 1064; Percent complete: 26.6%; Average loss: 3.4302 Iteration: 1065; Percent complete: 26.6%; Average loss: 3.2198 Iteration: 1066; Percent complete: 26.7%; Average loss: 3.5504 Iteration: 1067; Percent complete: 26.7%; Average loss: 3.5475 Iteration: 1068; Percent complete: 26.7%; Average loss: 3.3220 Iteration: 1069; Percent complete: 26.7%; Average loss: 3.3161 Iteration: 1070; Percent complete: 26.8%; Average loss: 3.5123 Iteration: 1071; Percent complete: 26.8%; Average loss: 3.5566 Iteration: 1072; Percent complete: 26.8%; Average loss: 3.2613 Iteration: 1073; Percent complete: 26.8%; Average loss: 3.2600 Iteration: 1074; Percent complete: 26.9%; Average loss: 3.2983 Iteration: 1075; Percent complete: 26.9%; Average loss: 3.5248 Iteration: 1076; Percent complete: 26.9%; Average loss: 3.4831 Iteration: 1077; Percent complete: 26.9%; Average loss: 3.4946 Iteration: 1078; Percent complete: 27.0%; Average loss: 3.5266 Iteration: 1079; Percent complete: 27.0%; Average loss: 3.3361 Iteration: 1080; Percent complete: 27.0%; Average loss: 3.1770 Iteration: 1081; Percent complete: 27.0%; Average loss: 3.4720 Iteration: 1082; Percent complete: 27.1%; Average loss: 3.2981 Iteration: 1083; Percent complete: 27.1%; Average loss: 3.3841 Iteration: 1084; Percent complete: 27.1%; Average loss: 3.4711 Iteration: 1085; Percent complete: 27.1%; Average loss: 3.3238 Iteration: 1086; Percent complete: 27.2%; Average loss: 3.3971 Iteration: 1087; Percent complete: 27.2%; Average loss: 3.4090 Iteration: 1088; Percent complete: 27.2%; Average loss: 3.3703 Iteration: 1089; Percent complete: 27.2%; Average loss: 3.4217 Iteration: 1090; Percent complete: 27.3%; Average loss: 3.5441 Iteration: 1091; Percent complete: 27.3%; Average loss: 3.1727 Iteration: 1092; Percent complete: 27.3%; Average loss: 3.4980 Iteration: 1093; Percent complete: 27.3%; Average loss: 3.5585 Iteration: 1094; Percent complete: 27.4%; Average loss: 3.4125 Iteration: 1095; Percent complete: 27.4%; Average loss: 3.3813 Iteration: 1096; Percent complete: 27.4%; Average loss: 3.5643 Iteration: 1097; Percent complete: 27.4%; Average loss: 3.4122 Iteration: 1098; Percent complete: 27.5%; Average loss: 3.4458 Iteration: 1099; Percent complete: 27.5%; Average loss: 3.4134 Iteration: 1100; Percent complete: 27.5%; Average loss: 3.2381 Iteration: 1101; Percent complete: 27.5%; Average loss: 3.4913 Iteration: 1102; Percent complete: 27.6%; Average loss: 3.1517 Iteration: 1103; Percent complete: 27.6%; Average loss: 3.4470 Iteration: 1104; Percent complete: 27.6%; Average loss: 3.4220 Iteration: 1105; Percent complete: 27.6%; Average loss: 3.4555 Iteration: 1106; Percent complete: 27.7%; Average loss: 3.6539 Iteration: 1107; Percent complete: 27.7%; Average loss: 3.4542 Iteration: 1108; Percent complete: 27.7%; Average loss: 3.2190 Iteration: 1109; Percent complete: 27.7%; Average loss: 3.5509 Iteration: 1110; Percent complete: 27.8%; Average loss: 3.5056 Iteration: 1111; Percent complete: 27.8%; Average loss: 3.5611 Iteration: 1112; Percent complete: 27.8%; Average loss: 3.4565 Iteration: 1113; Percent complete: 27.8%; Average loss: 3.4261 Iteration: 1114; Percent complete: 27.9%; Average loss: 3.3002 Iteration: 1115; Percent complete: 27.9%; Average loss: 3.4294 Iteration: 1116; Percent complete: 27.9%; Average loss: 3.3823 Iteration: 1117; Percent complete: 27.9%; Average loss: 3.3264 Iteration: 1118; Percent complete: 28.0%; Average loss: 3.4244 Iteration: 1119; Percent complete: 28.0%; Average loss: 3.7376 Iteration: 1120; Percent complete: 28.0%; Average loss: 3.4268 Iteration: 1121; Percent complete: 28.0%; Average loss: 3.3059 Iteration: 1122; Percent complete: 28.1%; Average loss: 3.3597 Iteration: 1123; Percent complete: 28.1%; Average loss: 3.5500 Iteration: 1124; Percent complete: 28.1%; Average loss: 3.1763 Iteration: 1125; Percent complete: 28.1%; Average loss: 3.2178 Iteration: 1126; Percent complete: 28.1%; Average loss: 3.3972 Iteration: 1127; Percent complete: 28.2%; Average loss: 3.5206 Iteration: 1128; Percent complete: 28.2%; Average loss: 3.6414 Iteration: 1129; Percent complete: 28.2%; Average loss: 3.4850 Iteration: 1130; Percent complete: 28.2%; Average loss: 3.5649 Iteration: 1131; Percent complete: 28.3%; Average loss: 3.1183 Iteration: 1132; Percent complete: 28.3%; Average loss: 3.4441 Iteration: 1133; Percent complete: 28.3%; Average loss: 3.5498 Iteration: 1134; Percent complete: 28.3%; Average loss: 3.4529 Iteration: 1135; Percent complete: 28.4%; Average loss: 3.4909 Iteration: 1136; Percent complete: 28.4%; Average loss: 3.4876 Iteration: 1137; Percent complete: 28.4%; Average loss: 3.3263 Iteration: 1138; Percent complete: 28.4%; Average loss: 3.3523 Iteration: 1139; Percent complete: 28.5%; Average loss: 3.5379 Iteration: 1140; Percent complete: 28.5%; Average loss: 3.5178 Iteration: 1141; Percent complete: 28.5%; Average loss: 3.5047 Iteration: 1142; Percent complete: 28.5%; Average loss: 3.3242 Iteration: 1143; Percent complete: 28.6%; Average loss: 3.4016 Iteration: 1144; Percent complete: 28.6%; Average loss: 3.4480 Iteration: 1145; Percent complete: 28.6%; Average loss: 3.3096 Iteration: 1146; Percent complete: 28.6%; Average loss: 3.3509 Iteration: 1147; Percent complete: 28.7%; Average loss: 3.3645 Iteration: 1148; Percent complete: 28.7%; Average loss: 3.0403 Iteration: 1149; Percent complete: 28.7%; Average loss: 3.4162 Iteration: 1150; Percent complete: 28.7%; Average loss: 3.5092 Iteration: 1151; Percent complete: 28.8%; Average loss: 3.3332 Iteration: 1152; Percent complete: 28.8%; Average loss: 3.1975 Iteration: 1153; Percent complete: 28.8%; Average loss: 3.6462 Iteration: 1154; Percent complete: 28.8%; Average loss: 3.5101 Iteration: 1155; Percent complete: 28.9%; Average loss: 3.3488 Iteration: 1156; Percent complete: 28.9%; Average loss: 3.4219 Iteration: 1157; Percent complete: 28.9%; Average loss: 3.2798 Iteration: 1158; Percent complete: 28.9%; Average loss: 3.6036 Iteration: 1159; Percent complete: 29.0%; Average loss: 3.3310 Iteration: 1160; Percent complete: 29.0%; Average loss: 3.2711 Iteration: 1161; Percent complete: 29.0%; Average loss: 3.4605 Iteration: 1162; Percent complete: 29.0%; Average loss: 3.0622 Iteration: 1163; Percent complete: 29.1%; Average loss: 3.4337 Iteration: 1164; Percent complete: 29.1%; Average loss: 3.2529 Iteration: 1165; Percent complete: 29.1%; Average loss: 3.3851 Iteration: 1166; Percent complete: 29.1%; Average loss: 3.5376 Iteration: 1167; Percent complete: 29.2%; Average loss: 3.4511 Iteration: 1168; Percent complete: 29.2%; Average loss: 3.3334 Iteration: 1169; Percent complete: 29.2%; Average loss: 3.6662 Iteration: 1170; Percent complete: 29.2%; Average loss: 3.1853 Iteration: 1171; Percent complete: 29.3%; Average loss: 3.3107 Iteration: 1172; Percent complete: 29.3%; Average loss: 3.4710 Iteration: 1173; Percent complete: 29.3%; Average loss: 3.4961 Iteration: 1174; Percent complete: 29.3%; Average loss: 3.3463 Iteration: 1175; Percent complete: 29.4%; Average loss: 3.3408 Iteration: 1176; Percent complete: 29.4%; Average loss: 3.7867 Iteration: 1177; Percent complete: 29.4%; Average loss: 3.3250 Iteration: 1178; Percent complete: 29.4%; Average loss: 3.4048 Iteration: 1179; Percent complete: 29.5%; Average loss: 3.4313 Iteration: 1180; Percent complete: 29.5%; Average loss: 3.3420 Iteration: 1181; Percent complete: 29.5%; Average loss: 3.3472 Iteration: 1182; Percent complete: 29.5%; Average loss: 3.2070 Iteration: 1183; Percent complete: 29.6%; Average loss: 3.7777 Iteration: 1184; Percent complete: 29.6%; Average loss: 3.3820 Iteration: 1185; Percent complete: 29.6%; Average loss: 3.3602 Iteration: 1186; Percent complete: 29.6%; Average loss: 3.5427 Iteration: 1187; Percent complete: 29.7%; Average loss: 3.5581 Iteration: 1188; Percent complete: 29.7%; Average loss: 3.3267 Iteration: 1189; Percent complete: 29.7%; Average loss: 2.9495 Iteration: 1190; Percent complete: 29.8%; Average loss: 3.3402 Iteration: 1191; Percent complete: 29.8%; Average loss: 3.1244 Iteration: 1192; Percent complete: 29.8%; Average loss: 3.3380 Iteration: 1193; Percent complete: 29.8%; Average loss: 3.3026 Iteration: 1194; Percent complete: 29.8%; Average loss: 3.3542 Iteration: 1195; Percent complete: 29.9%; Average loss: 3.2996 Iteration: 1196; Percent complete: 29.9%; Average loss: 3.4705 Iteration: 1197; Percent complete: 29.9%; Average loss: 3.5132 Iteration: 1198; Percent complete: 29.9%; Average loss: 3.3011 Iteration: 1199; Percent complete: 30.0%; Average loss: 3.2441 Iteration: 1200; Percent complete: 30.0%; Average loss: 3.3968 Iteration: 1201; Percent complete: 30.0%; Average loss: 3.4269 Iteration: 1202; Percent complete: 30.0%; Average loss: 3.0726 Iteration: 1203; Percent complete: 30.1%; Average loss: 3.2254 Iteration: 1204; Percent complete: 30.1%; Average loss: 3.3913 Iteration: 1205; Percent complete: 30.1%; Average loss: 3.5630 Iteration: 1206; Percent complete: 30.1%; Average loss: 3.4360 Iteration: 1207; Percent complete: 30.2%; Average loss: 3.3500 Iteration: 1208; Percent complete: 30.2%; Average loss: 3.5105 Iteration: 1209; Percent complete: 30.2%; Average loss: 3.5038 Iteration: 1210; Percent complete: 30.2%; Average loss: 3.2796 Iteration: 1211; Percent complete: 30.3%; Average loss: 3.3600 Iteration: 1212; Percent complete: 30.3%; Average loss: 3.3548 Iteration: 1213; Percent complete: 30.3%; Average loss: 3.1918 Iteration: 1214; Percent complete: 30.3%; Average loss: 3.2629 Iteration: 1215; Percent complete: 30.4%; Average loss: 3.2284 Iteration: 1216; Percent complete: 30.4%; Average loss: 3.4864 Iteration: 1217; Percent complete: 30.4%; Average loss: 3.2173 Iteration: 1218; Percent complete: 30.4%; Average loss: 3.4351 Iteration: 1219; Percent complete: 30.5%; Average loss: 3.5482 Iteration: 1220; Percent complete: 30.5%; Average loss: 3.2276 Iteration: 1221; Percent complete: 30.5%; Average loss: 3.1746 Iteration: 1222; Percent complete: 30.6%; Average loss: 3.1899 Iteration: 1223; Percent complete: 30.6%; Average loss: 3.1802 Iteration: 1224; Percent complete: 30.6%; Average loss: 3.1957 Iteration: 1225; Percent complete: 30.6%; Average loss: 3.5805 Iteration: 1226; Percent complete: 30.6%; Average loss: 3.4425 Iteration: 1227; Percent complete: 30.7%; Average loss: 3.3218 Iteration: 1228; Percent complete: 30.7%; Average loss: 3.3296 Iteration: 1229; Percent complete: 30.7%; Average loss: 3.0346 Iteration: 1230; Percent complete: 30.8%; Average loss: 3.2599 Iteration: 1231; Percent complete: 30.8%; Average loss: 3.0039 Iteration: 1232; Percent complete: 30.8%; Average loss: 3.4266 Iteration: 1233; Percent complete: 30.8%; Average loss: 3.5409 Iteration: 1234; Percent complete: 30.9%; Average loss: 3.5018 Iteration: 1235; Percent complete: 30.9%; Average loss: 3.2463 Iteration: 1236; Percent complete: 30.9%; Average loss: 3.3117 Iteration: 1237; Percent complete: 30.9%; Average loss: 3.3434 Iteration: 1238; Percent complete: 30.9%; Average loss: 3.2203 Iteration: 1239; Percent complete: 31.0%; Average loss: 3.2203 Iteration: 1240; Percent complete: 31.0%; Average loss: 3.4984 Iteration: 1241; Percent complete: 31.0%; Average loss: 3.4080 Iteration: 1242; Percent complete: 31.1%; Average loss: 3.3214 Iteration: 1243; Percent complete: 31.1%; Average loss: 3.4004 Iteration: 1244; Percent complete: 31.1%; Average loss: 3.2304 Iteration: 1245; Percent complete: 31.1%; Average loss: 3.3270 Iteration: 1246; Percent complete: 31.1%; Average loss: 3.2574 Iteration: 1247; Percent complete: 31.2%; Average loss: 3.2018 Iteration: 1248; Percent complete: 31.2%; Average loss: 3.4061 Iteration: 1249; Percent complete: 31.2%; Average loss: 3.3894 Iteration: 1250; Percent complete: 31.2%; Average loss: 3.2838 Iteration: 1251; Percent complete: 31.3%; Average loss: 3.2936 Iteration: 1252; Percent complete: 31.3%; Average loss: 3.1343 Iteration: 1253; Percent complete: 31.3%; Average loss: 3.6057 Iteration: 1254; Percent complete: 31.4%; Average loss: 3.4842 Iteration: 1255; Percent complete: 31.4%; Average loss: 3.3544 Iteration: 1256; Percent complete: 31.4%; Average loss: 3.4036 Iteration: 1257; Percent complete: 31.4%; Average loss: 3.2920 Iteration: 1258; Percent complete: 31.4%; Average loss: 3.5674 Iteration: 1259; Percent complete: 31.5%; Average loss: 3.2772 Iteration: 1260; Percent complete: 31.5%; Average loss: 3.2308 Iteration: 1261; Percent complete: 31.5%; Average loss: 3.5208 Iteration: 1262; Percent complete: 31.6%; Average loss: 3.5806 Iteration: 1263; Percent complete: 31.6%; Average loss: 3.3279 Iteration: 1264; Percent complete: 31.6%; Average loss: 3.6041 Iteration: 1265; Percent complete: 31.6%; Average loss: 3.4696 Iteration: 1266; Percent complete: 31.6%; Average loss: 3.5877 Iteration: 1267; Percent complete: 31.7%; Average loss: 3.5034 Iteration: 1268; Percent complete: 31.7%; Average loss: 3.3956 Iteration: 1269; Percent complete: 31.7%; Average loss: 3.3295 Iteration: 1270; Percent complete: 31.8%; Average loss: 3.2503 Iteration: 1271; Percent complete: 31.8%; Average loss: 3.3542 Iteration: 1272; Percent complete: 31.8%; Average loss: 3.4671 Iteration: 1273; Percent complete: 31.8%; Average loss: 3.7014 Iteration: 1274; Percent complete: 31.9%; Average loss: 3.4618 Iteration: 1275; Percent complete: 31.9%; Average loss: 3.2852 Iteration: 1276; Percent complete: 31.9%; Average loss: 3.4935 Iteration: 1277; Percent complete: 31.9%; Average loss: 3.2957 Iteration: 1278; Percent complete: 31.9%; Average loss: 3.4253 Iteration: 1279; Percent complete: 32.0%; Average loss: 3.5858 Iteration: 1280; Percent complete: 32.0%; Average loss: 3.2989 Iteration: 1281; Percent complete: 32.0%; Average loss: 3.2142 Iteration: 1282; Percent complete: 32.0%; Average loss: 3.2897 Iteration: 1283; Percent complete: 32.1%; Average loss: 3.1443 Iteration: 1284; Percent complete: 32.1%; Average loss: 3.1639 Iteration: 1285; Percent complete: 32.1%; Average loss: 3.4735 Iteration: 1286; Percent complete: 32.1%; Average loss: 3.2425 Iteration: 1287; Percent complete: 32.2%; Average loss: 3.2299 Iteration: 1288; Percent complete: 32.2%; Average loss: 3.5765 Iteration: 1289; Percent complete: 32.2%; Average loss: 3.4438 Iteration: 1290; Percent complete: 32.2%; Average loss: 3.2792 Iteration: 1291; Percent complete: 32.3%; Average loss: 3.2577 Iteration: 1292; Percent complete: 32.3%; Average loss: 3.3110 Iteration: 1293; Percent complete: 32.3%; Average loss: 3.3394 Iteration: 1294; Percent complete: 32.4%; Average loss: 3.3840 Iteration: 1295; Percent complete: 32.4%; Average loss: 3.3229 Iteration: 1296; Percent complete: 32.4%; Average loss: 3.5759 Iteration: 1297; Percent complete: 32.4%; Average loss: 3.3809 Iteration: 1298; Percent complete: 32.5%; Average loss: 3.5260 Iteration: 1299; Percent complete: 32.5%; Average loss: 3.2497 Iteration: 1300; Percent complete: 32.5%; Average loss: 3.4900 Iteration: 1301; Percent complete: 32.5%; Average loss: 3.5324 Iteration: 1302; Percent complete: 32.6%; Average loss: 3.1717 Iteration: 1303; Percent complete: 32.6%; Average loss: 3.1907 Iteration: 1304; Percent complete: 32.6%; Average loss: 3.3797 Iteration: 1305; Percent complete: 32.6%; Average loss: 3.4008 Iteration: 1306; Percent complete: 32.6%; Average loss: 3.4701 Iteration: 1307; Percent complete: 32.7%; Average loss: 3.3527 Iteration: 1308; Percent complete: 32.7%; Average loss: 3.4559 Iteration: 1309; Percent complete: 32.7%; Average loss: 3.1152 Iteration: 1310; Percent complete: 32.8%; Average loss: 3.4286 Iteration: 1311; Percent complete: 32.8%; Average loss: 3.4445 Iteration: 1312; Percent complete: 32.8%; Average loss: 3.5338 Iteration: 1313; Percent complete: 32.8%; Average loss: 3.4433 Iteration: 1314; Percent complete: 32.9%; Average loss: 3.5451 Iteration: 1315; Percent complete: 32.9%; Average loss: 3.3478 Iteration: 1316; Percent complete: 32.9%; Average loss: 3.3365 Iteration: 1317; Percent complete: 32.9%; Average loss: 3.4804 Iteration: 1318; Percent complete: 33.0%; Average loss: 3.4385 Iteration: 1319; Percent complete: 33.0%; Average loss: 3.3732 Iteration: 1320; Percent complete: 33.0%; Average loss: 3.4694 Iteration: 1321; Percent complete: 33.0%; Average loss: 3.5645 Iteration: 1322; Percent complete: 33.1%; Average loss: 3.3283 Iteration: 1323; Percent complete: 33.1%; Average loss: 3.4640 Iteration: 1324; Percent complete: 33.1%; Average loss: 3.2182 Iteration: 1325; Percent complete: 33.1%; Average loss: 3.1296 Iteration: 1326; Percent complete: 33.1%; Average loss: 3.2424 Iteration: 1327; Percent complete: 33.2%; Average loss: 3.3189 Iteration: 1328; Percent complete: 33.2%; Average loss: 3.4559 Iteration: 1329; Percent complete: 33.2%; Average loss: 3.5747 Iteration: 1330; Percent complete: 33.2%; Average loss: 3.3570 Iteration: 1331; Percent complete: 33.3%; Average loss: 3.2298 Iteration: 1332; Percent complete: 33.3%; Average loss: 3.2086 Iteration: 1333; Percent complete: 33.3%; Average loss: 3.3567 Iteration: 1334; Percent complete: 33.4%; Average loss: 3.3970 Iteration: 1335; Percent complete: 33.4%; Average loss: 3.5023 Iteration: 1336; Percent complete: 33.4%; Average loss: 3.4633 Iteration: 1337; Percent complete: 33.4%; Average loss: 3.3942 Iteration: 1338; Percent complete: 33.5%; Average loss: 3.5711 Iteration: 1339; Percent complete: 33.5%; Average loss: 3.1918 Iteration: 1340; Percent complete: 33.5%; Average loss: 3.7675 Iteration: 1341; Percent complete: 33.5%; Average loss: 3.3501 Iteration: 1342; Percent complete: 33.6%; Average loss: 3.3911 Iteration: 1343; Percent complete: 33.6%; Average loss: 3.0648 Iteration: 1344; Percent complete: 33.6%; Average loss: 3.4739 Iteration: 1345; Percent complete: 33.6%; Average loss: 3.0459 Iteration: 1346; Percent complete: 33.7%; Average loss: 3.5033 Iteration: 1347; Percent complete: 33.7%; Average loss: 3.4817 Iteration: 1348; Percent complete: 33.7%; Average loss: 3.2747 Iteration: 1349; Percent complete: 33.7%; Average loss: 3.3942 Iteration: 1350; Percent complete: 33.8%; Average loss: 3.2682 Iteration: 1351; Percent complete: 33.8%; Average loss: 3.3755 Iteration: 1352; Percent complete: 33.8%; Average loss: 3.5390 Iteration: 1353; Percent complete: 33.8%; Average loss: 3.6284 Iteration: 1354; Percent complete: 33.9%; Average loss: 3.2616 Iteration: 1355; Percent complete: 33.9%; Average loss: 3.1460 Iteration: 1356; Percent complete: 33.9%; Average loss: 3.3595 Iteration: 1357; Percent complete: 33.9%; Average loss: 3.2046 Iteration: 1358; Percent complete: 34.0%; Average loss: 3.3462 Iteration: 1359; Percent complete: 34.0%; Average loss: 3.2004 Iteration: 1360; Percent complete: 34.0%; Average loss: 3.7134 Iteration: 1361; Percent complete: 34.0%; Average loss: 3.4980 Iteration: 1362; Percent complete: 34.1%; Average loss: 3.1875 Iteration: 1363; Percent complete: 34.1%; Average loss: 3.5243 Iteration: 1364; Percent complete: 34.1%; Average loss: 3.3047 Iteration: 1365; Percent complete: 34.1%; Average loss: 3.3089 Iteration: 1366; Percent complete: 34.2%; Average loss: 3.3313 Iteration: 1367; Percent complete: 34.2%; Average loss: 3.1715 Iteration: 1368; Percent complete: 34.2%; Average loss: 3.1487 Iteration: 1369; Percent complete: 34.2%; Average loss: 3.6518 Iteration: 1370; Percent complete: 34.2%; Average loss: 3.1981 Iteration: 1371; Percent complete: 34.3%; Average loss: 3.4787 Iteration: 1372; Percent complete: 34.3%; Average loss: 3.2417 Iteration: 1373; Percent complete: 34.3%; Average loss: 3.3655 Iteration: 1374; Percent complete: 34.4%; Average loss: 3.3504 Iteration: 1375; Percent complete: 34.4%; Average loss: 3.7146 Iteration: 1376; Percent complete: 34.4%; Average loss: 3.2491 Iteration: 1377; Percent complete: 34.4%; Average loss: 3.1569 Iteration: 1378; Percent complete: 34.4%; Average loss: 3.1847 Iteration: 1379; Percent complete: 34.5%; Average loss: 3.1899 Iteration: 1380; Percent complete: 34.5%; Average loss: 3.3218 Iteration: 1381; Percent complete: 34.5%; Average loss: 2.8744 Iteration: 1382; Percent complete: 34.5%; Average loss: 3.3394 Iteration: 1383; Percent complete: 34.6%; Average loss: 3.3353 Iteration: 1384; Percent complete: 34.6%; Average loss: 3.2661 Iteration: 1385; Percent complete: 34.6%; Average loss: 3.3386 Iteration: 1386; Percent complete: 34.6%; Average loss: 3.5226 Iteration: 1387; Percent complete: 34.7%; Average loss: 3.1939 Iteration: 1388; Percent complete: 34.7%; Average loss: 3.1632 Iteration: 1389; Percent complete: 34.7%; Average loss: 3.5059 Iteration: 1390; Percent complete: 34.8%; Average loss: 3.4053 Iteration: 1391; Percent complete: 34.8%; Average loss: 3.1992 Iteration: 1392; Percent complete: 34.8%; Average loss: 3.2879 Iteration: 1393; Percent complete: 34.8%; Average loss: 3.3355 Iteration: 1394; Percent complete: 34.8%; Average loss: 3.3469 Iteration: 1395; Percent complete: 34.9%; Average loss: 2.9802 Iteration: 1396; Percent complete: 34.9%; Average loss: 3.3676 Iteration: 1397; Percent complete: 34.9%; Average loss: 3.1797 Iteration: 1398; Percent complete: 34.9%; Average loss: 3.4565 Iteration: 1399; Percent complete: 35.0%; Average loss: 3.3540 Iteration: 1400; Percent complete: 35.0%; Average loss: 3.0152 Iteration: 1401; Percent complete: 35.0%; Average loss: 3.3152 Iteration: 1402; Percent complete: 35.0%; Average loss: 3.3814 Iteration: 1403; Percent complete: 35.1%; Average loss: 3.3526 Iteration: 1404; Percent complete: 35.1%; Average loss: 3.4196 Iteration: 1405; Percent complete: 35.1%; Average loss: 3.1984 Iteration: 1406; Percent complete: 35.1%; Average loss: 3.2227 Iteration: 1407; Percent complete: 35.2%; Average loss: 3.2787 Iteration: 1408; Percent complete: 35.2%; Average loss: 3.4897 Iteration: 1409; Percent complete: 35.2%; Average loss: 3.3251 Iteration: 1410; Percent complete: 35.2%; Average loss: 3.5140 Iteration: 1411; Percent complete: 35.3%; Average loss: 3.2053 Iteration: 1412; Percent complete: 35.3%; Average loss: 3.4096 Iteration: 1413; Percent complete: 35.3%; Average loss: 3.3620 Iteration: 1414; Percent complete: 35.4%; Average loss: 3.5113 Iteration: 1415; Percent complete: 35.4%; Average loss: 3.4358 Iteration: 1416; Percent complete: 35.4%; Average loss: 3.3445 Iteration: 1417; Percent complete: 35.4%; Average loss: 3.3661 Iteration: 1418; Percent complete: 35.4%; Average loss: 3.2316 Iteration: 1419; Percent complete: 35.5%; Average loss: 3.3744 Iteration: 1420; Percent complete: 35.5%; Average loss: 3.1099 Iteration: 1421; Percent complete: 35.5%; Average loss: 3.2005 Iteration: 1422; Percent complete: 35.5%; Average loss: 3.3431 Iteration: 1423; Percent complete: 35.6%; Average loss: 3.4347 Iteration: 1424; Percent complete: 35.6%; Average loss: 3.4470 Iteration: 1425; Percent complete: 35.6%; Average loss: 3.4663 Iteration: 1426; Percent complete: 35.6%; Average loss: 3.2668 Iteration: 1427; Percent complete: 35.7%; Average loss: 3.5101 Iteration: 1428; Percent complete: 35.7%; Average loss: 3.3620 Iteration: 1429; Percent complete: 35.7%; Average loss: 3.2725 Iteration: 1430; Percent complete: 35.8%; Average loss: 3.1537 Iteration: 1431; Percent complete: 35.8%; Average loss: 3.1187 Iteration: 1432; Percent complete: 35.8%; Average loss: 3.3632 Iteration: 1433; Percent complete: 35.8%; Average loss: 3.3400 Iteration: 1434; Percent complete: 35.9%; Average loss: 3.2082 Iteration: 1435; Percent complete: 35.9%; Average loss: 3.4569 Iteration: 1436; Percent complete: 35.9%; Average loss: 3.3680 Iteration: 1437; Percent complete: 35.9%; Average loss: 3.3373 Iteration: 1438; Percent complete: 35.9%; Average loss: 3.3454 Iteration: 1439; Percent complete: 36.0%; Average loss: 3.1206 Iteration: 1440; Percent complete: 36.0%; Average loss: 3.3912 Iteration: 1441; Percent complete: 36.0%; Average loss: 3.2256 Iteration: 1442; Percent complete: 36.0%; Average loss: 3.2774 Iteration: 1443; Percent complete: 36.1%; Average loss: 3.0757 Iteration: 1444; Percent complete: 36.1%; Average loss: 3.1110 Iteration: 1445; Percent complete: 36.1%; Average loss: 3.3830 Iteration: 1446; Percent complete: 36.1%; Average loss: 3.5598 Iteration: 1447; Percent complete: 36.2%; Average loss: 3.4658 Iteration: 1448; Percent complete: 36.2%; Average loss: 3.3327 Iteration: 1449; Percent complete: 36.2%; Average loss: 3.3765 Iteration: 1450; Percent complete: 36.2%; Average loss: 3.6995 Iteration: 1451; Percent complete: 36.3%; Average loss: 3.3534 Iteration: 1452; Percent complete: 36.3%; Average loss: 3.2928 Iteration: 1453; Percent complete: 36.3%; Average loss: 3.5244 Iteration: 1454; Percent complete: 36.4%; Average loss: 3.4072 Iteration: 1455; Percent complete: 36.4%; Average loss: 3.2070 Iteration: 1456; Percent complete: 36.4%; Average loss: 3.2394 Iteration: 1457; Percent complete: 36.4%; Average loss: 3.5008 Iteration: 1458; Percent complete: 36.4%; Average loss: 3.5435 Iteration: 1459; Percent complete: 36.5%; Average loss: 3.0663 Iteration: 1460; Percent complete: 36.5%; Average loss: 3.3370 Iteration: 1461; Percent complete: 36.5%; Average loss: 3.4575 Iteration: 1462; Percent complete: 36.5%; Average loss: 3.0482 Iteration: 1463; Percent complete: 36.6%; Average loss: 3.1630 Iteration: 1464; Percent complete: 36.6%; Average loss: 3.0725 Iteration: 1465; Percent complete: 36.6%; Average loss: 3.4388 Iteration: 1466; Percent complete: 36.6%; Average loss: 3.3757 Iteration: 1467; Percent complete: 36.7%; Average loss: 3.2742 Iteration: 1468; Percent complete: 36.7%; Average loss: 3.2295 Iteration: 1469; Percent complete: 36.7%; Average loss: 3.3428 Iteration: 1470; Percent complete: 36.8%; Average loss: 3.4175 Iteration: 1471; Percent complete: 36.8%; Average loss: 3.1565 Iteration: 1472; Percent complete: 36.8%; Average loss: 3.0171 Iteration: 1473; Percent complete: 36.8%; Average loss: 3.2797 Iteration: 1474; Percent complete: 36.9%; Average loss: 3.2147 Iteration: 1475; Percent complete: 36.9%; Average loss: 3.4493 Iteration: 1476; Percent complete: 36.9%; Average loss: 3.1727 Iteration: 1477; Percent complete: 36.9%; Average loss: 3.5340 Iteration: 1478; Percent complete: 37.0%; Average loss: 3.4036 Iteration: 1479; Percent complete: 37.0%; Average loss: 3.5663 Iteration: 1480; Percent complete: 37.0%; Average loss: 3.4118 Iteration: 1481; Percent complete: 37.0%; Average loss: 3.4496 Iteration: 1482; Percent complete: 37.0%; Average loss: 3.2222 Iteration: 1483; Percent complete: 37.1%; Average loss: 3.1389 Iteration: 1484; Percent complete: 37.1%; Average loss: 3.6878 Iteration: 1485; Percent complete: 37.1%; Average loss: 3.3569 Iteration: 1486; Percent complete: 37.1%; Average loss: 3.6019 Iteration: 1487; Percent complete: 37.2%; Average loss: 3.2034 Iteration: 1488; Percent complete: 37.2%; Average loss: 3.4469 Iteration: 1489; Percent complete: 37.2%; Average loss: 3.1109 Iteration: 1490; Percent complete: 37.2%; Average loss: 3.3127 Iteration: 1491; Percent complete: 37.3%; Average loss: 3.3164 Iteration: 1492; Percent complete: 37.3%; Average loss: 3.1305 Iteration: 1493; Percent complete: 37.3%; Average loss: 3.1823 Iteration: 1494; Percent complete: 37.4%; Average loss: 3.4409 Iteration: 1495; Percent complete: 37.4%; Average loss: 3.1927 Iteration: 1496; Percent complete: 37.4%; Average loss: 3.3628 Iteration: 1497; Percent complete: 37.4%; Average loss: 3.2558 Iteration: 1498; Percent complete: 37.5%; Average loss: 3.2053 Iteration: 1499; Percent complete: 37.5%; Average loss: 3.4432 Iteration: 1500; Percent complete: 37.5%; Average loss: 3.2870 Iteration: 1501; Percent complete: 37.5%; Average loss: 3.3913 Iteration: 1502; Percent complete: 37.5%; Average loss: 3.2613 Iteration: 1503; Percent complete: 37.6%; Average loss: 3.2459 Iteration: 1504; Percent complete: 37.6%; Average loss: 3.5282 Iteration: 1505; Percent complete: 37.6%; Average loss: 3.1134 Iteration: 1506; Percent complete: 37.6%; Average loss: 3.1875 Iteration: 1507; Percent complete: 37.7%; Average loss: 3.4108 Iteration: 1508; Percent complete: 37.7%; Average loss: 3.4708 Iteration: 1509; Percent complete: 37.7%; Average loss: 3.1690 Iteration: 1510; Percent complete: 37.8%; Average loss: 3.0648 Iteration: 1511; Percent complete: 37.8%; Average loss: 3.3554 Iteration: 1512; Percent complete: 37.8%; Average loss: 3.2344 Iteration: 1513; Percent complete: 37.8%; Average loss: 3.3933 Iteration: 1514; Percent complete: 37.9%; Average loss: 3.3327 Iteration: 1515; Percent complete: 37.9%; Average loss: 3.3665 Iteration: 1516; Percent complete: 37.9%; Average loss: 3.2950 Iteration: 1517; Percent complete: 37.9%; Average loss: 3.2231 Iteration: 1518; Percent complete: 38.0%; Average loss: 3.4935 Iteration: 1519; Percent complete: 38.0%; Average loss: 3.0941 Iteration: 1520; Percent complete: 38.0%; Average loss: 3.2174 Iteration: 1521; Percent complete: 38.0%; Average loss: 3.3388 Iteration: 1522; Percent complete: 38.0%; Average loss: 3.2847 Iteration: 1523; Percent complete: 38.1%; Average loss: 3.1845 Iteration: 1524; Percent complete: 38.1%; Average loss: 3.1207 Iteration: 1525; Percent complete: 38.1%; Average loss: 3.4555 Iteration: 1526; Percent complete: 38.1%; Average loss: 3.0821 Iteration: 1527; Percent complete: 38.2%; Average loss: 3.2155 Iteration: 1528; Percent complete: 38.2%; Average loss: 3.0081 Iteration: 1529; Percent complete: 38.2%; Average loss: 3.0838 Iteration: 1530; Percent complete: 38.2%; Average loss: 3.4137 Iteration: 1531; Percent complete: 38.3%; Average loss: 3.1732 Iteration: 1532; Percent complete: 38.3%; Average loss: 3.4407 Iteration: 1533; Percent complete: 38.3%; Average loss: 2.9579 Iteration: 1534; Percent complete: 38.4%; Average loss: 3.3627 Iteration: 1535; Percent complete: 38.4%; Average loss: 3.1683 Iteration: 1536; Percent complete: 38.4%; Average loss: 3.2936 Iteration: 1537; Percent complete: 38.4%; Average loss: 3.3818 Iteration: 1538; Percent complete: 38.5%; Average loss: 3.2243 Iteration: 1539; Percent complete: 38.5%; Average loss: 3.2794 Iteration: 1540; Percent complete: 38.5%; Average loss: 3.4776 Iteration: 1541; Percent complete: 38.5%; Average loss: 3.4206 Iteration: 1542; Percent complete: 38.6%; Average loss: 3.1979 Iteration: 1543; Percent complete: 38.6%; Average loss: 3.3228 Iteration: 1544; Percent complete: 38.6%; Average loss: 3.1918 Iteration: 1545; Percent complete: 38.6%; Average loss: 3.3524 Iteration: 1546; Percent complete: 38.6%; Average loss: 3.3426 Iteration: 1547; Percent complete: 38.7%; Average loss: 2.9194 Iteration: 1548; Percent complete: 38.7%; Average loss: 2.9914 Iteration: 1549; Percent complete: 38.7%; Average loss: 3.3071 Iteration: 1550; Percent complete: 38.8%; Average loss: 3.4022 Iteration: 1551; Percent complete: 38.8%; Average loss: 3.2712 Iteration: 1552; Percent complete: 38.8%; Average loss: 3.4993 Iteration: 1553; Percent complete: 38.8%; Average loss: 3.1479 Iteration: 1554; Percent complete: 38.9%; Average loss: 3.0963 Iteration: 1555; Percent complete: 38.9%; Average loss: 3.1962 Iteration: 1556; Percent complete: 38.9%; Average loss: 3.1984 Iteration: 1557; Percent complete: 38.9%; Average loss: 3.5228 Iteration: 1558; Percent complete: 39.0%; Average loss: 3.3644 Iteration: 1559; Percent complete: 39.0%; Average loss: 3.1306 Iteration: 1560; Percent complete: 39.0%; Average loss: 3.2523 Iteration: 1561; Percent complete: 39.0%; Average loss: 3.2897 Iteration: 1562; Percent complete: 39.1%; Average loss: 3.2484 Iteration: 1563; Percent complete: 39.1%; Average loss: 3.4739 Iteration: 1564; Percent complete: 39.1%; Average loss: 3.5070 Iteration: 1565; Percent complete: 39.1%; Average loss: 3.2506 Iteration: 1566; Percent complete: 39.1%; Average loss: 3.2271 Iteration: 1567; Percent complete: 39.2%; Average loss: 3.2020 Iteration: 1568; Percent complete: 39.2%; Average loss: 3.4850 Iteration: 1569; Percent complete: 39.2%; Average loss: 3.3254 Iteration: 1570; Percent complete: 39.2%; Average loss: 3.1998 Iteration: 1571; Percent complete: 39.3%; Average loss: 3.3727 Iteration: 1572; Percent complete: 39.3%; Average loss: 3.1191 Iteration: 1573; Percent complete: 39.3%; Average loss: 3.2796 Iteration: 1574; Percent complete: 39.4%; Average loss: 3.3314 Iteration: 1575; Percent complete: 39.4%; Average loss: 3.4566 Iteration: 1576; Percent complete: 39.4%; Average loss: 3.2117 Iteration: 1577; Percent complete: 39.4%; Average loss: 3.2715 Iteration: 1578; Percent complete: 39.5%; Average loss: 3.3615 Iteration: 1579; Percent complete: 39.5%; Average loss: 3.0366 Iteration: 1580; Percent complete: 39.5%; Average loss: 3.4252 Iteration: 1581; Percent complete: 39.5%; Average loss: 3.3118 Iteration: 1582; Percent complete: 39.6%; Average loss: 3.2058 Iteration: 1583; Percent complete: 39.6%; Average loss: 3.2169 Iteration: 1584; Percent complete: 39.6%; Average loss: 3.1592 Iteration: 1585; Percent complete: 39.6%; Average loss: 3.2314 Iteration: 1586; Percent complete: 39.6%; Average loss: 3.5111 Iteration: 1587; Percent complete: 39.7%; Average loss: 3.2509 Iteration: 1588; Percent complete: 39.7%; Average loss: 3.2112 Iteration: 1589; Percent complete: 39.7%; Average loss: 3.5176 Iteration: 1590; Percent complete: 39.8%; Average loss: 3.0441 Iteration: 1591; Percent complete: 39.8%; Average loss: 3.1356 Iteration: 1592; Percent complete: 39.8%; Average loss: 3.2152 Iteration: 1593; Percent complete: 39.8%; Average loss: 3.2790 Iteration: 1594; Percent complete: 39.9%; Average loss: 3.4627 Iteration: 1595; Percent complete: 39.9%; Average loss: 3.2328 Iteration: 1596; Percent complete: 39.9%; Average loss: 3.4703 Iteration: 1597; Percent complete: 39.9%; Average loss: 3.3940 Iteration: 1598; Percent complete: 40.0%; Average loss: 3.4134 Iteration: 1599; Percent complete: 40.0%; Average loss: 3.4210 Iteration: 1600; Percent complete: 40.0%; Average loss: 3.2858 Iteration: 1601; Percent complete: 40.0%; Average loss: 3.3529 Iteration: 1602; Percent complete: 40.1%; Average loss: 3.3437 Iteration: 1603; Percent complete: 40.1%; Average loss: 3.1728 Iteration: 1604; Percent complete: 40.1%; Average loss: 3.6594 Iteration: 1605; Percent complete: 40.1%; Average loss: 3.2034 Iteration: 1606; Percent complete: 40.2%; Average loss: 3.2605 Iteration: 1607; Percent complete: 40.2%; Average loss: 3.2755 Iteration: 1608; Percent complete: 40.2%; Average loss: 3.4002 Iteration: 1609; Percent complete: 40.2%; Average loss: 3.5063 Iteration: 1610; Percent complete: 40.2%; Average loss: 3.2840 Iteration: 1611; Percent complete: 40.3%; Average loss: 3.3572 Iteration: 1612; Percent complete: 40.3%; Average loss: 3.3341 Iteration: 1613; Percent complete: 40.3%; Average loss: 3.1464 Iteration: 1614; Percent complete: 40.4%; Average loss: 3.2114 Iteration: 1615; Percent complete: 40.4%; Average loss: 3.2682 Iteration: 1616; Percent complete: 40.4%; Average loss: 3.3124 Iteration: 1617; Percent complete: 40.4%; Average loss: 3.0795 Iteration: 1618; Percent complete: 40.5%; Average loss: 3.2584 Iteration: 1619; Percent complete: 40.5%; Average loss: 3.3012 Iteration: 1620; Percent complete: 40.5%; Average loss: 3.1099 Iteration: 1621; Percent complete: 40.5%; Average loss: 3.2831 Iteration: 1622; Percent complete: 40.6%; Average loss: 3.2126 Iteration: 1623; Percent complete: 40.6%; Average loss: 3.1574 Iteration: 1624; Percent complete: 40.6%; Average loss: 3.4727 Iteration: 1625; Percent complete: 40.6%; Average loss: 3.3289 Iteration: 1626; Percent complete: 40.6%; Average loss: 3.3838 Iteration: 1627; Percent complete: 40.7%; Average loss: 3.2978 Iteration: 1628; Percent complete: 40.7%; Average loss: 2.9229 Iteration: 1629; Percent complete: 40.7%; Average loss: 3.0224 Iteration: 1630; Percent complete: 40.8%; Average loss: 3.3433 Iteration: 1631; Percent complete: 40.8%; Average loss: 3.5273 Iteration: 1632; Percent complete: 40.8%; Average loss: 3.2150 Iteration: 1633; Percent complete: 40.8%; Average loss: 3.3196 Iteration: 1634; Percent complete: 40.8%; Average loss: 3.1367 Iteration: 1635; Percent complete: 40.9%; Average loss: 3.2337 Iteration: 1636; Percent complete: 40.9%; Average loss: 3.3661 Iteration: 1637; Percent complete: 40.9%; Average loss: 3.2003 Iteration: 1638; Percent complete: 40.9%; Average loss: 3.3305 Iteration: 1639; Percent complete: 41.0%; Average loss: 3.2228 Iteration: 1640; Percent complete: 41.0%; Average loss: 3.1453 Iteration: 1641; Percent complete: 41.0%; Average loss: 3.3261 Iteration: 1642; Percent complete: 41.0%; Average loss: 3.1648 Iteration: 1643; Percent complete: 41.1%; Average loss: 3.2372 Iteration: 1644; Percent complete: 41.1%; Average loss: 3.3882 Iteration: 1645; Percent complete: 41.1%; Average loss: 3.5143 Iteration: 1646; Percent complete: 41.1%; Average loss: 3.3229 Iteration: 1647; Percent complete: 41.2%; Average loss: 3.5207 Iteration: 1648; Percent complete: 41.2%; Average loss: 3.2282 Iteration: 1649; Percent complete: 41.2%; Average loss: 3.4511 Iteration: 1650; Percent complete: 41.2%; Average loss: 3.3077 Iteration: 1651; Percent complete: 41.3%; Average loss: 3.3695 Iteration: 1652; Percent complete: 41.3%; Average loss: 3.4318 Iteration: 1653; Percent complete: 41.3%; Average loss: 3.7112 Iteration: 1654; Percent complete: 41.3%; Average loss: 3.2062 Iteration: 1655; Percent complete: 41.4%; Average loss: 3.1634 Iteration: 1656; Percent complete: 41.4%; Average loss: 3.2670 Iteration: 1657; Percent complete: 41.4%; Average loss: 2.9269 Iteration: 1658; Percent complete: 41.4%; Average loss: 3.2974 Iteration: 1659; Percent complete: 41.5%; Average loss: 3.1334 Iteration: 1660; Percent complete: 41.5%; Average loss: 3.2744 Iteration: 1661; Percent complete: 41.5%; Average loss: 3.3334 Iteration: 1662; Percent complete: 41.5%; Average loss: 3.3004 Iteration: 1663; Percent complete: 41.6%; Average loss: 3.3324 Iteration: 1664; Percent complete: 41.6%; Average loss: 3.1422 Iteration: 1665; Percent complete: 41.6%; Average loss: 3.3417 Iteration: 1666; Percent complete: 41.6%; Average loss: 3.2497 Iteration: 1667; Percent complete: 41.7%; Average loss: 3.0720 Iteration: 1668; Percent complete: 41.7%; Average loss: 3.1251 Iteration: 1669; Percent complete: 41.7%; Average loss: 3.1953 Iteration: 1670; Percent complete: 41.8%; Average loss: 3.1753 Iteration: 1671; Percent complete: 41.8%; Average loss: 3.1224 Iteration: 1672; Percent complete: 41.8%; Average loss: 3.2384 Iteration: 1673; Percent complete: 41.8%; Average loss: 3.1326 Iteration: 1674; Percent complete: 41.9%; Average loss: 3.2197 Iteration: 1675; Percent complete: 41.9%; Average loss: 3.1598 Iteration: 1676; Percent complete: 41.9%; Average loss: 3.2753 Iteration: 1677; Percent complete: 41.9%; Average loss: 3.1873 Iteration: 1678; Percent complete: 41.9%; Average loss: 3.4351 Iteration: 1679; Percent complete: 42.0%; Average loss: 3.4469 Iteration: 1680; Percent complete: 42.0%; Average loss: 3.1618 Iteration: 1681; Percent complete: 42.0%; Average loss: 3.2725 Iteration: 1682; Percent complete: 42.0%; Average loss: 3.0607 Iteration: 1683; Percent complete: 42.1%; Average loss: 3.1297 Iteration: 1684; Percent complete: 42.1%; Average loss: 3.2453 Iteration: 1685; Percent complete: 42.1%; Average loss: 3.3741 Iteration: 1686; Percent complete: 42.1%; Average loss: 3.1540 Iteration: 1687; Percent complete: 42.2%; Average loss: 3.0720 Iteration: 1688; Percent complete: 42.2%; Average loss: 3.1082 Iteration: 1689; Percent complete: 42.2%; Average loss: 3.3288 Iteration: 1690; Percent complete: 42.2%; Average loss: 3.2524 Iteration: 1691; Percent complete: 42.3%; Average loss: 3.2329 Iteration: 1692; Percent complete: 42.3%; Average loss: 3.4397 Iteration: 1693; Percent complete: 42.3%; Average loss: 3.1466 Iteration: 1694; Percent complete: 42.4%; Average loss: 3.4924 Iteration: 1695; Percent complete: 42.4%; Average loss: 3.2455 Iteration: 1696; Percent complete: 42.4%; Average loss: 3.3228 Iteration: 1697; Percent complete: 42.4%; Average loss: 3.2764 Iteration: 1698; Percent complete: 42.4%; Average loss: 3.2447 Iteration: 1699; Percent complete: 42.5%; Average loss: 3.2676 Iteration: 1700; Percent complete: 42.5%; Average loss: 3.1526 Iteration: 1701; Percent complete: 42.5%; Average loss: 3.0106 Iteration: 1702; Percent complete: 42.5%; Average loss: 3.1920 Iteration: 1703; Percent complete: 42.6%; Average loss: 3.3096 Iteration: 1704; Percent complete: 42.6%; Average loss: 3.4570 Iteration: 1705; Percent complete: 42.6%; Average loss: 3.1133 Iteration: 1706; Percent complete: 42.6%; Average loss: 3.2881 Iteration: 1707; Percent complete: 42.7%; Average loss: 2.9595 Iteration: 1708; Percent complete: 42.7%; Average loss: 3.3304 Iteration: 1709; Percent complete: 42.7%; Average loss: 3.1888 Iteration: 1710; Percent complete: 42.8%; Average loss: 3.2009 Iteration: 1711; Percent complete: 42.8%; Average loss: 3.0726 Iteration: 1712; Percent complete: 42.8%; Average loss: 3.4864 Iteration: 1713; Percent complete: 42.8%; Average loss: 3.1090 Iteration: 1714; Percent complete: 42.9%; Average loss: 3.3349 Iteration: 1715; Percent complete: 42.9%; Average loss: 3.5123 Iteration: 1716; Percent complete: 42.9%; Average loss: 3.4016 Iteration: 1717; Percent complete: 42.9%; Average loss: 3.5093 Iteration: 1718; Percent complete: 43.0%; Average loss: 3.1627 Iteration: 1719; Percent complete: 43.0%; Average loss: 3.2676 Iteration: 1720; Percent complete: 43.0%; Average loss: 3.2252 Iteration: 1721; Percent complete: 43.0%; Average loss: 3.2998 Iteration: 1722; Percent complete: 43.0%; Average loss: 3.1355 Iteration: 1723; Percent complete: 43.1%; Average loss: 3.4736 Iteration: 1724; Percent complete: 43.1%; Average loss: 3.1169 Iteration: 1725; Percent complete: 43.1%; Average loss: 3.0700 Iteration: 1726; Percent complete: 43.1%; Average loss: 3.0896 Iteration: 1727; Percent complete: 43.2%; Average loss: 2.8464 Iteration: 1728; Percent complete: 43.2%; Average loss: 3.4563 Iteration: 1729; Percent complete: 43.2%; Average loss: 3.1331 Iteration: 1730; Percent complete: 43.2%; Average loss: 3.4886 Iteration: 1731; Percent complete: 43.3%; Average loss: 3.3103 Iteration: 1732; Percent complete: 43.3%; Average loss: 3.2206 Iteration: 1733; Percent complete: 43.3%; Average loss: 3.3427 Iteration: 1734; Percent complete: 43.4%; Average loss: 3.4021 Iteration: 1735; Percent complete: 43.4%; Average loss: 3.1175 Iteration: 1736; Percent complete: 43.4%; Average loss: 3.4016 Iteration: 1737; Percent complete: 43.4%; Average loss: 3.2915 Iteration: 1738; Percent complete: 43.5%; Average loss: 3.1412 Iteration: 1739; Percent complete: 43.5%; Average loss: 3.0803 Iteration: 1740; Percent complete: 43.5%; Average loss: 3.0232 Iteration: 1741; Percent complete: 43.5%; Average loss: 3.3669 Iteration: 1742; Percent complete: 43.5%; Average loss: 3.6156 Iteration: 1743; Percent complete: 43.6%; Average loss: 3.3993 Iteration: 1744; Percent complete: 43.6%; Average loss: 3.2856 Iteration: 1745; Percent complete: 43.6%; Average loss: 3.5019 Iteration: 1746; Percent complete: 43.6%; Average loss: 3.2940 Iteration: 1747; Percent complete: 43.7%; Average loss: 3.4363 Iteration: 1748; Percent complete: 43.7%; Average loss: 3.3309 Iteration: 1749; Percent complete: 43.7%; Average loss: 3.2458 Iteration: 1750; Percent complete: 43.8%; Average loss: 3.2665 Iteration: 1751; Percent complete: 43.8%; Average loss: 3.3725 Iteration: 1752; Percent complete: 43.8%; Average loss: 3.1749 Iteration: 1753; Percent complete: 43.8%; Average loss: 3.0850 Iteration: 1754; Percent complete: 43.9%; Average loss: 3.2595 Iteration: 1755; Percent complete: 43.9%; Average loss: 3.4096 Iteration: 1756; Percent complete: 43.9%; Average loss: 3.3189 Iteration: 1757; Percent complete: 43.9%; Average loss: 3.1791 Iteration: 1758; Percent complete: 44.0%; Average loss: 3.3021 Iteration: 1759; Percent complete: 44.0%; Average loss: 3.2121 Iteration: 1760; Percent complete: 44.0%; Average loss: 3.1236 Iteration: 1761; Percent complete: 44.0%; Average loss: 3.2757 Iteration: 1762; Percent complete: 44.0%; Average loss: 3.2325 Iteration: 1763; Percent complete: 44.1%; Average loss: 3.1486 Iteration: 1764; Percent complete: 44.1%; Average loss: 3.1543 Iteration: 1765; Percent complete: 44.1%; Average loss: 3.1877 Iteration: 1766; Percent complete: 44.1%; Average loss: 2.9106 Iteration: 1767; Percent complete: 44.2%; Average loss: 3.3932 Iteration: 1768; Percent complete: 44.2%; Average loss: 3.1842 Iteration: 1769; Percent complete: 44.2%; Average loss: 3.2546 Iteration: 1770; Percent complete: 44.2%; Average loss: 3.1598 Iteration: 1771; Percent complete: 44.3%; Average loss: 3.2580 Iteration: 1772; Percent complete: 44.3%; Average loss: 3.1934 Iteration: 1773; Percent complete: 44.3%; Average loss: 3.1643 Iteration: 1774; Percent complete: 44.4%; Average loss: 3.1505 Iteration: 1775; Percent complete: 44.4%; Average loss: 3.3271 Iteration: 1776; Percent complete: 44.4%; Average loss: 2.9122 Iteration: 1777; Percent complete: 44.4%; Average loss: 3.1679 Iteration: 1778; Percent complete: 44.5%; Average loss: 3.1385 Iteration: 1779; Percent complete: 44.5%; Average loss: 3.0925 Iteration: 1780; Percent complete: 44.5%; Average loss: 3.3921 Iteration: 1781; Percent complete: 44.5%; Average loss: 3.2587 Iteration: 1782; Percent complete: 44.5%; Average loss: 3.3624 Iteration: 1783; Percent complete: 44.6%; Average loss: 3.2956 Iteration: 1784; Percent complete: 44.6%; Average loss: 3.0756 Iteration: 1785; Percent complete: 44.6%; Average loss: 3.4774 Iteration: 1786; Percent complete: 44.6%; Average loss: 3.4496 Iteration: 1787; Percent complete: 44.7%; Average loss: 3.0745 Iteration: 1788; Percent complete: 44.7%; Average loss: 3.5233 Iteration: 1789; Percent complete: 44.7%; Average loss: 3.3197 Iteration: 1790; Percent complete: 44.8%; Average loss: 3.2173 Iteration: 1791; Percent complete: 44.8%; Average loss: 3.2921 Iteration: 1792; Percent complete: 44.8%; Average loss: 3.2014 Iteration: 1793; Percent complete: 44.8%; Average loss: 3.1566 Iteration: 1794; Percent complete: 44.9%; Average loss: 3.0093 Iteration: 1795; Percent complete: 44.9%; Average loss: 3.3228 Iteration: 1796; Percent complete: 44.9%; Average loss: 3.2435 Iteration: 1797; Percent complete: 44.9%; Average loss: 3.4900 Iteration: 1798; Percent complete: 45.0%; Average loss: 3.4283 Iteration: 1799; Percent complete: 45.0%; Average loss: 3.2794 Iteration: 1800; Percent complete: 45.0%; Average loss: 3.1328 Iteration: 1801; Percent complete: 45.0%; Average loss: 3.2034 Iteration: 1802; Percent complete: 45.1%; Average loss: 3.1240 Iteration: 1803; Percent complete: 45.1%; Average loss: 3.1768 Iteration: 1804; Percent complete: 45.1%; Average loss: 3.3159 Iteration: 1805; Percent complete: 45.1%; Average loss: 3.3554 Iteration: 1806; Percent complete: 45.1%; Average loss: 3.0405 Iteration: 1807; Percent complete: 45.2%; Average loss: 3.2590 Iteration: 1808; Percent complete: 45.2%; Average loss: 3.3302 Iteration: 1809; Percent complete: 45.2%; Average loss: 3.3214 Iteration: 1810; Percent complete: 45.2%; Average loss: 3.2606 Iteration: 1811; Percent complete: 45.3%; Average loss: 3.2378 Iteration: 1812; Percent complete: 45.3%; Average loss: 3.2192 Iteration: 1813; Percent complete: 45.3%; Average loss: 3.0614 Iteration: 1814; Percent complete: 45.4%; Average loss: 3.1923 Iteration: 1815; Percent complete: 45.4%; Average loss: 3.1520 Iteration: 1816; Percent complete: 45.4%; Average loss: 3.0875 Iteration: 1817; Percent complete: 45.4%; Average loss: 3.2898 Iteration: 1818; Percent complete: 45.5%; Average loss: 3.3896 Iteration: 1819; Percent complete: 45.5%; Average loss: 3.4528 Iteration: 1820; Percent complete: 45.5%; Average loss: 3.2061 Iteration: 1821; Percent complete: 45.5%; Average loss: 3.0762 Iteration: 1822; Percent complete: 45.6%; Average loss: 3.1014 Iteration: 1823; Percent complete: 45.6%; Average loss: 3.1459 Iteration: 1824; Percent complete: 45.6%; Average loss: 3.2647 Iteration: 1825; Percent complete: 45.6%; Average loss: 3.4506 Iteration: 1826; Percent complete: 45.6%; Average loss: 3.1490 Iteration: 1827; Percent complete: 45.7%; Average loss: 3.3050 Iteration: 1828; Percent complete: 45.7%; Average loss: 3.1591 Iteration: 1829; Percent complete: 45.7%; Average loss: 3.1451 Iteration: 1830; Percent complete: 45.8%; Average loss: 3.1231 Iteration: 1831; Percent complete: 45.8%; Average loss: 3.0660 Iteration: 1832; Percent complete: 45.8%; Average loss: 3.2333 Iteration: 1833; Percent complete: 45.8%; Average loss: 3.1580 Iteration: 1834; Percent complete: 45.9%; Average loss: 3.1413 Iteration: 1835; Percent complete: 45.9%; Average loss: 3.1729 Iteration: 1836; Percent complete: 45.9%; Average loss: 3.2260 Iteration: 1837; Percent complete: 45.9%; Average loss: 3.4654 Iteration: 1838; Percent complete: 46.0%; Average loss: 3.3201 Iteration: 1839; Percent complete: 46.0%; Average loss: 3.2876 Iteration: 1840; Percent complete: 46.0%; Average loss: 3.3289 Iteration: 1841; Percent complete: 46.0%; Average loss: 2.9478 Iteration: 1842; Percent complete: 46.1%; Average loss: 2.8855 Iteration: 1843; Percent complete: 46.1%; Average loss: 3.4175 Iteration: 1844; Percent complete: 46.1%; Average loss: 3.2247 Iteration: 1845; Percent complete: 46.1%; Average loss: 3.4679 Iteration: 1846; Percent complete: 46.2%; Average loss: 3.2071 Iteration: 1847; Percent complete: 46.2%; Average loss: 3.2465 Iteration: 1848; Percent complete: 46.2%; Average loss: 3.2541 Iteration: 1849; Percent complete: 46.2%; Average loss: 3.1801 Iteration: 1850; Percent complete: 46.2%; Average loss: 3.0938 Iteration: 1851; Percent complete: 46.3%; Average loss: 3.1862 Iteration: 1852; Percent complete: 46.3%; Average loss: 3.1788 Iteration: 1853; Percent complete: 46.3%; Average loss: 3.0383 Iteration: 1854; Percent complete: 46.4%; Average loss: 2.8825 Iteration: 1855; Percent complete: 46.4%; Average loss: 3.1820 Iteration: 1856; Percent complete: 46.4%; Average loss: 3.4388 Iteration: 1857; Percent complete: 46.4%; Average loss: 3.4253 Iteration: 1858; Percent complete: 46.5%; Average loss: 3.1810 Iteration: 1859; Percent complete: 46.5%; Average loss: 3.0450 Iteration: 1860; Percent complete: 46.5%; Average loss: 3.3560 Iteration: 1861; Percent complete: 46.5%; Average loss: 3.3447 Iteration: 1862; Percent complete: 46.6%; Average loss: 3.4300 Iteration: 1863; Percent complete: 46.6%; Average loss: 3.5228 Iteration: 1864; Percent complete: 46.6%; Average loss: 3.2196 Iteration: 1865; Percent complete: 46.6%; Average loss: 3.1984 Iteration: 1866; Percent complete: 46.7%; Average loss: 3.2603 Iteration: 1867; Percent complete: 46.7%; Average loss: 2.9594 Iteration: 1868; Percent complete: 46.7%; Average loss: 3.1446 Iteration: 1869; Percent complete: 46.7%; Average loss: 3.3582 Iteration: 1870; Percent complete: 46.8%; Average loss: 3.1875 Iteration: 1871; Percent complete: 46.8%; Average loss: 3.4413 Iteration: 1872; Percent complete: 46.8%; Average loss: 3.2458 Iteration: 1873; Percent complete: 46.8%; Average loss: 3.1889 Iteration: 1874; Percent complete: 46.9%; Average loss: 3.1934 Iteration: 1875; Percent complete: 46.9%; Average loss: 2.9535 Iteration: 1876; Percent complete: 46.9%; Average loss: 3.4444 Iteration: 1877; Percent complete: 46.9%; Average loss: 3.3142 Iteration: 1878; Percent complete: 46.9%; Average loss: 3.1094 Iteration: 1879; Percent complete: 47.0%; Average loss: 3.2296 Iteration: 1880; Percent complete: 47.0%; Average loss: 3.3522 Iteration: 1881; Percent complete: 47.0%; Average loss: 2.9553 Iteration: 1882; Percent complete: 47.0%; Average loss: 3.3747 Iteration: 1883; Percent complete: 47.1%; Average loss: 3.1812 Iteration: 1884; Percent complete: 47.1%; Average loss: 2.9316 Iteration: 1885; Percent complete: 47.1%; Average loss: 2.9469 Iteration: 1886; Percent complete: 47.1%; Average loss: 3.1161 Iteration: 1887; Percent complete: 47.2%; Average loss: 3.1150 Iteration: 1888; Percent complete: 47.2%; Average loss: 3.2381 Iteration: 1889; Percent complete: 47.2%; Average loss: 3.1847 Iteration: 1890; Percent complete: 47.2%; Average loss: 3.2538 Iteration: 1891; Percent complete: 47.3%; Average loss: 3.3907 Iteration: 1892; Percent complete: 47.3%; Average loss: 3.1109 Iteration: 1893; Percent complete: 47.3%; Average loss: 3.2107 Iteration: 1894; Percent complete: 47.3%; Average loss: 3.3136 Iteration: 1895; Percent complete: 47.4%; Average loss: 3.0580 Iteration: 1896; Percent complete: 47.4%; Average loss: 3.1721 Iteration: 1897; Percent complete: 47.4%; Average loss: 3.1322 Iteration: 1898; Percent complete: 47.4%; Average loss: 2.7282 Iteration: 1899; Percent complete: 47.5%; Average loss: 3.2818 Iteration: 1900; Percent complete: 47.5%; Average loss: 3.1860 Iteration: 1901; Percent complete: 47.5%; Average loss: 3.0784 Iteration: 1902; Percent complete: 47.5%; Average loss: 3.0873 Iteration: 1903; Percent complete: 47.6%; Average loss: 3.1192 Iteration: 1904; Percent complete: 47.6%; Average loss: 3.2456 Iteration: 1905; Percent complete: 47.6%; Average loss: 3.0352 Iteration: 1906; Percent complete: 47.6%; Average loss: 2.8477 Iteration: 1907; Percent complete: 47.7%; Average loss: 3.3774 Iteration: 1908; Percent complete: 47.7%; Average loss: 3.3625 Iteration: 1909; Percent complete: 47.7%; Average loss: 3.3343 Iteration: 1910; Percent complete: 47.8%; Average loss: 3.0614 Iteration: 1911; Percent complete: 47.8%; Average loss: 3.1334 Iteration: 1912; Percent complete: 47.8%; Average loss: 3.2090 Iteration: 1913; Percent complete: 47.8%; Average loss: 3.3747 Iteration: 1914; Percent complete: 47.9%; Average loss: 3.4437 Iteration: 1915; Percent complete: 47.9%; Average loss: 3.2166 Iteration: 1916; Percent complete: 47.9%; Average loss: 3.0970 Iteration: 1917; Percent complete: 47.9%; Average loss: 3.1107 Iteration: 1918; Percent complete: 47.9%; Average loss: 3.1989 Iteration: 1919; Percent complete: 48.0%; Average loss: 3.0064 Iteration: 1920; Percent complete: 48.0%; Average loss: 3.3178 Iteration: 1921; Percent complete: 48.0%; Average loss: 3.0296 Iteration: 1922; Percent complete: 48.0%; Average loss: 3.2588 Iteration: 1923; Percent complete: 48.1%; Average loss: 3.2253 Iteration: 1924; Percent complete: 48.1%; Average loss: 3.1312 Iteration: 1925; Percent complete: 48.1%; Average loss: 3.4196 Iteration: 1926; Percent complete: 48.1%; Average loss: 3.2525 Iteration: 1927; Percent complete: 48.2%; Average loss: 3.4103 Iteration: 1928; Percent complete: 48.2%; Average loss: 3.2850 Iteration: 1929; Percent complete: 48.2%; Average loss: 3.3931 Iteration: 1930; Percent complete: 48.2%; Average loss: 3.2645 Iteration: 1931; Percent complete: 48.3%; Average loss: 3.0684 Iteration: 1932; Percent complete: 48.3%; Average loss: 3.1625 Iteration: 1933; Percent complete: 48.3%; Average loss: 3.4482 Iteration: 1934; Percent complete: 48.4%; Average loss: 3.1261 Iteration: 1935; Percent complete: 48.4%; Average loss: 3.2619 Iteration: 1936; Percent complete: 48.4%; Average loss: 3.2172 Iteration: 1937; Percent complete: 48.4%; Average loss: 3.2893 Iteration: 1938; Percent complete: 48.4%; Average loss: 2.9538 Iteration: 1939; Percent complete: 48.5%; Average loss: 3.5536 Iteration: 1940; Percent complete: 48.5%; Average loss: 3.1270 Iteration: 1941; Percent complete: 48.5%; Average loss: 3.1290 Iteration: 1942; Percent complete: 48.5%; Average loss: 2.9938 Iteration: 1943; Percent complete: 48.6%; Average loss: 3.2109 Iteration: 1944; Percent complete: 48.6%; Average loss: 3.2417 Iteration: 1945; Percent complete: 48.6%; Average loss: 3.5277 Iteration: 1946; Percent complete: 48.6%; Average loss: 2.9629 Iteration: 1947; Percent complete: 48.7%; Average loss: 3.3614 Iteration: 1948; Percent complete: 48.7%; Average loss: 2.9791 Iteration: 1949; Percent complete: 48.7%; Average loss: 3.1712 Iteration: 1950; Percent complete: 48.8%; Average loss: 3.0196 Iteration: 1951; Percent complete: 48.8%; Average loss: 3.3614 Iteration: 1952; Percent complete: 48.8%; Average loss: 3.0921 Iteration: 1953; Percent complete: 48.8%; Average loss: 3.3149 Iteration: 1954; Percent complete: 48.9%; Average loss: 3.1038 Iteration: 1955; Percent complete: 48.9%; Average loss: 3.0557 Iteration: 1956; Percent complete: 48.9%; Average loss: 3.2041 Iteration: 1957; Percent complete: 48.9%; Average loss: 3.3014 Iteration: 1958; Percent complete: 48.9%; Average loss: 2.8707 Iteration: 1959; Percent complete: 49.0%; Average loss: 3.2549 Iteration: 1960; Percent complete: 49.0%; Average loss: 2.9461 Iteration: 1961; Percent complete: 49.0%; Average loss: 3.2241 Iteration: 1962; Percent complete: 49.0%; Average loss: 3.2206 Iteration: 1963; Percent complete: 49.1%; Average loss: 2.8906 Iteration: 1964; Percent complete: 49.1%; Average loss: 3.2065 Iteration: 1965; Percent complete: 49.1%; Average loss: 3.1791 Iteration: 1966; Percent complete: 49.1%; Average loss: 3.0190 Iteration: 1967; Percent complete: 49.2%; Average loss: 3.2159 Iteration: 1968; Percent complete: 49.2%; Average loss: 3.2074 Iteration: 1969; Percent complete: 49.2%; Average loss: 3.3530 Iteration: 1970; Percent complete: 49.2%; Average loss: 3.5659 Iteration: 1971; Percent complete: 49.3%; Average loss: 3.3463 Iteration: 1972; Percent complete: 49.3%; Average loss: 3.2650 Iteration: 1973; Percent complete: 49.3%; Average loss: 2.9250 Iteration: 1974; Percent complete: 49.4%; Average loss: 3.0987 Iteration: 1975; Percent complete: 49.4%; Average loss: 3.0753 Iteration: 1976; Percent complete: 49.4%; Average loss: 3.2692 Iteration: 1977; Percent complete: 49.4%; Average loss: 3.3174 Iteration: 1978; Percent complete: 49.5%; Average loss: 3.2928 Iteration: 1979; Percent complete: 49.5%; Average loss: 3.0910 Iteration: 1980; Percent complete: 49.5%; Average loss: 3.1591 Iteration: 1981; Percent complete: 49.5%; Average loss: 3.1025 Iteration: 1982; Percent complete: 49.5%; Average loss: 2.9712 Iteration: 1983; Percent complete: 49.6%; Average loss: 3.1833 Iteration: 1984; Percent complete: 49.6%; Average loss: 3.1653 Iteration: 1985; Percent complete: 49.6%; Average loss: 2.8869 Iteration: 1986; Percent complete: 49.6%; Average loss: 3.0812 Iteration: 1987; Percent complete: 49.7%; Average loss: 3.1252 Iteration: 1988; Percent complete: 49.7%; Average loss: 3.2517 Iteration: 1989; Percent complete: 49.7%; Average loss: 3.0692 Iteration: 1990; Percent complete: 49.8%; Average loss: 2.9139 Iteration: 1991; Percent complete: 49.8%; Average loss: 3.1146 Iteration: 1992; Percent complete: 49.8%; Average loss: 3.2778 Iteration: 1993; Percent complete: 49.8%; Average loss: 3.1144 Iteration: 1994; Percent complete: 49.9%; Average loss: 3.2938 Iteration: 1995; Percent complete: 49.9%; Average loss: 3.2424 Iteration: 1996; Percent complete: 49.9%; Average loss: 2.9868 Iteration: 1997; Percent complete: 49.9%; Average loss: 3.0940 Iteration: 1998; Percent complete: 50.0%; Average loss: 3.3441 Iteration: 1999; Percent complete: 50.0%; Average loss: 2.9957 Iteration: 2000; Percent complete: 50.0%; Average loss: 3.0504 Iteration: 2001; Percent complete: 50.0%; Average loss: 3.1320 Iteration: 2002; Percent complete: 50.0%; Average loss: 3.1662 Iteration: 2003; Percent complete: 50.1%; Average loss: 3.1104 Iteration: 2004; Percent complete: 50.1%; Average loss: 3.2920 Iteration: 2005; Percent complete: 50.1%; Average loss: 3.5191 Iteration: 2006; Percent complete: 50.1%; Average loss: 3.1749 Iteration: 2007; Percent complete: 50.2%; Average loss: 3.2354 Iteration: 2008; Percent complete: 50.2%; Average loss: 3.0086 Iteration: 2009; Percent complete: 50.2%; Average loss: 3.1677 Iteration: 2010; Percent complete: 50.2%; Average loss: 3.1241 Iteration: 2011; Percent complete: 50.3%; Average loss: 3.1228 Iteration: 2012; Percent complete: 50.3%; Average loss: 3.1716 Iteration: 2013; Percent complete: 50.3%; Average loss: 3.2627 Iteration: 2014; Percent complete: 50.3%; Average loss: 3.1004 Iteration: 2015; Percent complete: 50.4%; Average loss: 3.3309 Iteration: 2016; Percent complete: 50.4%; Average loss: 3.0131 Iteration: 2017; Percent complete: 50.4%; Average loss: 3.0365 Iteration: 2018; Percent complete: 50.4%; Average loss: 3.3958 Iteration: 2019; Percent complete: 50.5%; Average loss: 3.1087 Iteration: 2020; Percent complete: 50.5%; Average loss: 3.3087 Iteration: 2021; Percent complete: 50.5%; Average loss: 3.3139 Iteration: 2022; Percent complete: 50.5%; Average loss: 3.1053 Iteration: 2023; Percent complete: 50.6%; Average loss: 2.8854 Iteration: 2024; Percent complete: 50.6%; Average loss: 3.1088 Iteration: 2025; Percent complete: 50.6%; Average loss: 3.0461 Iteration: 2026; Percent complete: 50.6%; Average loss: 3.2875 Iteration: 2027; Percent complete: 50.7%; Average loss: 3.2600 Iteration: 2028; Percent complete: 50.7%; Average loss: 3.1146 Iteration: 2029; Percent complete: 50.7%; Average loss: 2.9883 Iteration: 2030; Percent complete: 50.7%; Average loss: 3.2389 Iteration: 2031; Percent complete: 50.8%; Average loss: 3.1522 Iteration: 2032; Percent complete: 50.8%; Average loss: 3.2598 Iteration: 2033; Percent complete: 50.8%; Average loss: 2.9710 Iteration: 2034; Percent complete: 50.8%; Average loss: 3.2203 Iteration: 2035; Percent complete: 50.9%; Average loss: 3.1669 Iteration: 2036; Percent complete: 50.9%; Average loss: 3.1305 Iteration: 2037; Percent complete: 50.9%; Average loss: 3.1362 Iteration: 2038; Percent complete: 50.9%; Average loss: 3.2378 Iteration: 2039; Percent complete: 51.0%; Average loss: 3.2133 Iteration: 2040; Percent complete: 51.0%; Average loss: 3.2929 Iteration: 2041; Percent complete: 51.0%; Average loss: 3.2412 Iteration: 2042; Percent complete: 51.0%; Average loss: 2.9949 Iteration: 2043; Percent complete: 51.1%; Average loss: 3.1243 Iteration: 2044; Percent complete: 51.1%; Average loss: 3.0678 Iteration: 2045; Percent complete: 51.1%; Average loss: 3.3484 Iteration: 2046; Percent complete: 51.1%; Average loss: 3.1748 Iteration: 2047; Percent complete: 51.2%; Average loss: 3.1523 Iteration: 2048; Percent complete: 51.2%; Average loss: 3.2559 Iteration: 2049; Percent complete: 51.2%; Average loss: 3.2630 Iteration: 2050; Percent complete: 51.2%; Average loss: 3.1364 Iteration: 2051; Percent complete: 51.3%; Average loss: 3.1268 Iteration: 2052; Percent complete: 51.3%; Average loss: 3.0040 Iteration: 2053; Percent complete: 51.3%; Average loss: 3.0697 Iteration: 2054; Percent complete: 51.3%; Average loss: 3.1203 Iteration: 2055; Percent complete: 51.4%; Average loss: 3.4742 Iteration: 2056; Percent complete: 51.4%; Average loss: 3.4321 Iteration: 2057; Percent complete: 51.4%; Average loss: 3.0961 Iteration: 2058; Percent complete: 51.4%; Average loss: 3.1852 Iteration: 2059; Percent complete: 51.5%; Average loss: 3.3430 Iteration: 2060; Percent complete: 51.5%; Average loss: 3.3227 Iteration: 2061; Percent complete: 51.5%; Average loss: 3.0764 Iteration: 2062; Percent complete: 51.5%; Average loss: 3.1872 Iteration: 2063; Percent complete: 51.6%; Average loss: 3.1879 Iteration: 2064; Percent complete: 51.6%; Average loss: 2.8803 Iteration: 2065; Percent complete: 51.6%; Average loss: 3.1929 Iteration: 2066; Percent complete: 51.6%; Average loss: 3.1673 Iteration: 2067; Percent complete: 51.7%; Average loss: 3.1807 Iteration: 2068; Percent complete: 51.7%; Average loss: 2.9176 Iteration: 2069; Percent complete: 51.7%; Average loss: 3.1685 Iteration: 2070; Percent complete: 51.7%; Average loss: 3.1259 Iteration: 2071; Percent complete: 51.8%; Average loss: 3.2658 Iteration: 2072; Percent complete: 51.8%; Average loss: 3.1512 Iteration: 2073; Percent complete: 51.8%; Average loss: 3.1154 Iteration: 2074; Percent complete: 51.8%; Average loss: 3.1986 Iteration: 2075; Percent complete: 51.9%; Average loss: 3.0655 Iteration: 2076; Percent complete: 51.9%; Average loss: 3.2963 Iteration: 2077; Percent complete: 51.9%; Average loss: 3.0269 Iteration: 2078; Percent complete: 51.9%; Average loss: 3.1463 Iteration: 2079; Percent complete: 52.0%; Average loss: 3.0718 Iteration: 2080; Percent complete: 52.0%; Average loss: 3.1339 Iteration: 2081; Percent complete: 52.0%; Average loss: 3.2845 Iteration: 2082; Percent complete: 52.0%; Average loss: 2.9489 Iteration: 2083; Percent complete: 52.1%; Average loss: 3.2966 Iteration: 2084; Percent complete: 52.1%; Average loss: 3.1883 Iteration: 2085; Percent complete: 52.1%; Average loss: 2.9488 Iteration: 2086; Percent complete: 52.1%; Average loss: 3.0596 Iteration: 2087; Percent complete: 52.2%; Average loss: 3.0667 Iteration: 2088; Percent complete: 52.2%; Average loss: 3.0349 Iteration: 2089; Percent complete: 52.2%; Average loss: 3.0925 Iteration: 2090; Percent complete: 52.2%; Average loss: 3.2403 Iteration: 2091; Percent complete: 52.3%; Average loss: 3.0196 Iteration: 2092; Percent complete: 52.3%; Average loss: 3.3204 Iteration: 2093; Percent complete: 52.3%; Average loss: 2.9521 Iteration: 2094; Percent complete: 52.3%; Average loss: 2.9281 Iteration: 2095; Percent complete: 52.4%; Average loss: 3.0246 Iteration: 2096; Percent complete: 52.4%; Average loss: 3.3271 Iteration: 2097; Percent complete: 52.4%; Average loss: 3.2685 Iteration: 2098; Percent complete: 52.4%; Average loss: 3.0953 Iteration: 2099; Percent complete: 52.5%; Average loss: 3.1096 Iteration: 2100; Percent complete: 52.5%; Average loss: 2.9594 Iteration: 2101; Percent complete: 52.5%; Average loss: 3.0955 Iteration: 2102; Percent complete: 52.5%; Average loss: 2.9341 Iteration: 2103; Percent complete: 52.6%; Average loss: 3.1324 Iteration: 2104; Percent complete: 52.6%; Average loss: 3.0543 Iteration: 2105; Percent complete: 52.6%; Average loss: 3.0985 Iteration: 2106; Percent complete: 52.6%; Average loss: 3.2389 Iteration: 2107; Percent complete: 52.7%; Average loss: 3.3362 Iteration: 2108; Percent complete: 52.7%; Average loss: 3.1386 Iteration: 2109; Percent complete: 52.7%; Average loss: 3.1555 Iteration: 2110; Percent complete: 52.8%; Average loss: 3.0217 Iteration: 2111; Percent complete: 52.8%; Average loss: 2.9593 Iteration: 2112; Percent complete: 52.8%; Average loss: 3.1917 Iteration: 2113; Percent complete: 52.8%; Average loss: 3.3261 Iteration: 2114; Percent complete: 52.8%; Average loss: 3.0624 Iteration: 2115; Percent complete: 52.9%; Average loss: 3.0121 Iteration: 2116; Percent complete: 52.9%; Average loss: 3.1403 Iteration: 2117; Percent complete: 52.9%; Average loss: 3.0440 Iteration: 2118; Percent complete: 52.9%; Average loss: 3.0288 Iteration: 2119; Percent complete: 53.0%; Average loss: 3.1488 Iteration: 2120; Percent complete: 53.0%; Average loss: 3.2173 Iteration: 2121; Percent complete: 53.0%; Average loss: 3.2474 Iteration: 2122; Percent complete: 53.0%; Average loss: 3.1237 Iteration: 2123; Percent complete: 53.1%; Average loss: 3.1806 Iteration: 2124; Percent complete: 53.1%; Average loss: 3.1376 Iteration: 2125; Percent complete: 53.1%; Average loss: 3.3203 Iteration: 2126; Percent complete: 53.1%; Average loss: 2.7241 Iteration: 2127; Percent complete: 53.2%; Average loss: 3.0562 Iteration: 2128; Percent complete: 53.2%; Average loss: 3.0911 Iteration: 2129; Percent complete: 53.2%; Average loss: 3.4333 Iteration: 2130; Percent complete: 53.2%; Average loss: 3.0705 Iteration: 2131; Percent complete: 53.3%; Average loss: 3.1384 Iteration: 2132; Percent complete: 53.3%; Average loss: 3.1927 Iteration: 2133; Percent complete: 53.3%; Average loss: 3.0525 Iteration: 2134; Percent complete: 53.3%; Average loss: 3.4331 Iteration: 2135; Percent complete: 53.4%; Average loss: 2.9741 Iteration: 2136; Percent complete: 53.4%; Average loss: 3.1329 Iteration: 2137; Percent complete: 53.4%; Average loss: 3.2359 Iteration: 2138; Percent complete: 53.4%; Average loss: 3.3332 Iteration: 2139; Percent complete: 53.5%; Average loss: 3.1116 Iteration: 2140; Percent complete: 53.5%; Average loss: 2.9600 Iteration: 2141; Percent complete: 53.5%; Average loss: 3.3149 Iteration: 2142; Percent complete: 53.5%; Average loss: 3.2242 Iteration: 2143; Percent complete: 53.6%; Average loss: 3.0135 Iteration: 2144; Percent complete: 53.6%; Average loss: 3.1628 Iteration: 2145; Percent complete: 53.6%; Average loss: 2.9102 Iteration: 2146; Percent complete: 53.6%; Average loss: 3.0540 Iteration: 2147; Percent complete: 53.7%; Average loss: 3.0699 Iteration: 2148; Percent complete: 53.7%; Average loss: 3.1333 Iteration: 2149; Percent complete: 53.7%; Average loss: 3.0521 Iteration: 2150; Percent complete: 53.8%; Average loss: 3.2138 Iteration: 2151; Percent complete: 53.8%; Average loss: 3.1395 Iteration: 2152; Percent complete: 53.8%; Average loss: 2.8101 Iteration: 2153; Percent complete: 53.8%; Average loss: 2.9327 Iteration: 2154; Percent complete: 53.8%; Average loss: 3.1049 Iteration: 2155; Percent complete: 53.9%; Average loss: 2.9089 Iteration: 2156; Percent complete: 53.9%; Average loss: 3.2779 Iteration: 2157; Percent complete: 53.9%; Average loss: 2.9265 Iteration: 2158; Percent complete: 53.9%; Average loss: 3.1791 Iteration: 2159; Percent complete: 54.0%; Average loss: 3.2865 Iteration: 2160; Percent complete: 54.0%; Average loss: 3.1612 Iteration: 2161; Percent complete: 54.0%; Average loss: 3.1481 Iteration: 2162; Percent complete: 54.0%; Average loss: 3.0755 Iteration: 2163; Percent complete: 54.1%; Average loss: 2.7555 Iteration: 2164; Percent complete: 54.1%; Average loss: 3.1801 Iteration: 2165; Percent complete: 54.1%; Average loss: 2.9159 Iteration: 2166; Percent complete: 54.1%; Average loss: 3.2877 Iteration: 2167; Percent complete: 54.2%; Average loss: 3.1664 Iteration: 2168; Percent complete: 54.2%; Average loss: 3.1552 Iteration: 2169; Percent complete: 54.2%; Average loss: 2.9868 Iteration: 2170; Percent complete: 54.2%; Average loss: 3.1094 Iteration: 2171; Percent complete: 54.3%; Average loss: 3.0149 Iteration: 2172; Percent complete: 54.3%; Average loss: 3.1945 Iteration: 2173; Percent complete: 54.3%; Average loss: 3.1611 Iteration: 2174; Percent complete: 54.4%; Average loss: 3.0193 Iteration: 2175; Percent complete: 54.4%; Average loss: 3.0903 Iteration: 2176; Percent complete: 54.4%; Average loss: 3.1454 Iteration: 2177; Percent complete: 54.4%; Average loss: 3.0380 Iteration: 2178; Percent complete: 54.4%; Average loss: 2.9372 Iteration: 2179; Percent complete: 54.5%; Average loss: 3.0036 Iteration: 2180; Percent complete: 54.5%; Average loss: 2.9132 Iteration: 2181; Percent complete: 54.5%; Average loss: 3.1394 Iteration: 2182; Percent complete: 54.5%; Average loss: 3.2013 Iteration: 2183; Percent complete: 54.6%; Average loss: 3.1755 Iteration: 2184; Percent complete: 54.6%; Average loss: 3.0452 Iteration: 2185; Percent complete: 54.6%; Average loss: 3.0576 Iteration: 2186; Percent complete: 54.6%; Average loss: 3.0051 Iteration: 2187; Percent complete: 54.7%; Average loss: 3.0873 Iteration: 2188; Percent complete: 54.7%; Average loss: 3.0536 Iteration: 2189; Percent complete: 54.7%; Average loss: 3.1691 Iteration: 2190; Percent complete: 54.8%; Average loss: 3.1634 Iteration: 2191; Percent complete: 54.8%; Average loss: 3.1485 Iteration: 2192; Percent complete: 54.8%; Average loss: 3.3363 Iteration: 2193; Percent complete: 54.8%; Average loss: 2.8580 Iteration: 2194; Percent complete: 54.9%; Average loss: 3.0037 Iteration: 2195; Percent complete: 54.9%; Average loss: 3.2484 Iteration: 2196; Percent complete: 54.9%; Average loss: 3.2082 Iteration: 2197; Percent complete: 54.9%; Average loss: 3.0760 Iteration: 2198; Percent complete: 54.9%; Average loss: 3.1684 Iteration: 2199; Percent complete: 55.0%; Average loss: 3.1044 Iteration: 2200; Percent complete: 55.0%; Average loss: 2.9254 Iteration: 2201; Percent complete: 55.0%; Average loss: 3.4081 Iteration: 2202; Percent complete: 55.0%; Average loss: 2.9358 Iteration: 2203; Percent complete: 55.1%; Average loss: 3.0331 Iteration: 2204; Percent complete: 55.1%; Average loss: 3.0961 Iteration: 2205; Percent complete: 55.1%; Average loss: 3.0824 Iteration: 2206; Percent complete: 55.1%; Average loss: 3.1212 Iteration: 2207; Percent complete: 55.2%; Average loss: 2.8783 Iteration: 2208; Percent complete: 55.2%; Average loss: 3.3609 Iteration: 2209; Percent complete: 55.2%; Average loss: 3.3337 Iteration: 2210; Percent complete: 55.2%; Average loss: 3.1627 Iteration: 2211; Percent complete: 55.3%; Average loss: 3.0919 Iteration: 2212; Percent complete: 55.3%; Average loss: 2.9527 Iteration: 2213; Percent complete: 55.3%; Average loss: 3.0401 Iteration: 2214; Percent complete: 55.4%; Average loss: 2.9906 Iteration: 2215; Percent complete: 55.4%; Average loss: 2.9165 Iteration: 2216; Percent complete: 55.4%; Average loss: 2.9251 Iteration: 2217; Percent complete: 55.4%; Average loss: 3.4215 Iteration: 2218; Percent complete: 55.5%; Average loss: 3.2494 Iteration: 2219; Percent complete: 55.5%; Average loss: 2.9564 Iteration: 2220; Percent complete: 55.5%; Average loss: 3.3381 Iteration: 2221; Percent complete: 55.5%; Average loss: 3.3830 Iteration: 2222; Percent complete: 55.5%; Average loss: 3.0434 Iteration: 2223; Percent complete: 55.6%; Average loss: 3.3791 Iteration: 2224; Percent complete: 55.6%; Average loss: 3.1249 Iteration: 2225; Percent complete: 55.6%; Average loss: 3.0225 Iteration: 2226; Percent complete: 55.6%; Average loss: 3.0749 Iteration: 2227; Percent complete: 55.7%; Average loss: 3.1263 Iteration: 2228; Percent complete: 55.7%; Average loss: 3.1473 Iteration: 2229; Percent complete: 55.7%; Average loss: 3.1035 Iteration: 2230; Percent complete: 55.8%; Average loss: 3.0234 Iteration: 2231; Percent complete: 55.8%; Average loss: 2.9032 Iteration: 2232; Percent complete: 55.8%; Average loss: 3.1430 Iteration: 2233; Percent complete: 55.8%; Average loss: 2.9767 Iteration: 2234; Percent complete: 55.9%; Average loss: 3.2819 Iteration: 2235; Percent complete: 55.9%; Average loss: 3.2025 Iteration: 2236; Percent complete: 55.9%; Average loss: 3.0257 Iteration: 2237; Percent complete: 55.9%; Average loss: 3.3319 Iteration: 2238; Percent complete: 56.0%; Average loss: 3.0956 Iteration: 2239; Percent complete: 56.0%; Average loss: 3.0521 Iteration: 2240; Percent complete: 56.0%; Average loss: 3.1457 Iteration: 2241; Percent complete: 56.0%; Average loss: 3.2136 Iteration: 2242; Percent complete: 56.0%; Average loss: 3.5206 Iteration: 2243; Percent complete: 56.1%; Average loss: 2.9881 Iteration: 2244; Percent complete: 56.1%; Average loss: 3.1805 Iteration: 2245; Percent complete: 56.1%; Average loss: 3.1600 Iteration: 2246; Percent complete: 56.1%; Average loss: 3.0665 Iteration: 2247; Percent complete: 56.2%; Average loss: 3.4300 Iteration: 2248; Percent complete: 56.2%; Average loss: 3.0874 Iteration: 2249; Percent complete: 56.2%; Average loss: 3.1392 Iteration: 2250; Percent complete: 56.2%; Average loss: 2.8792 Iteration: 2251; Percent complete: 56.3%; Average loss: 3.0845 Iteration: 2252; Percent complete: 56.3%; Average loss: 3.1819 Iteration: 2253; Percent complete: 56.3%; Average loss: 3.2373 Iteration: 2254; Percent complete: 56.4%; Average loss: 2.9851 Iteration: 2255; Percent complete: 56.4%; Average loss: 3.1493 Iteration: 2256; Percent complete: 56.4%; Average loss: 2.8650 Iteration: 2257; Percent complete: 56.4%; Average loss: 2.8843 Iteration: 2258; Percent complete: 56.5%; Average loss: 3.0372 Iteration: 2259; Percent complete: 56.5%; Average loss: 2.9111 Iteration: 2260; Percent complete: 56.5%; Average loss: 2.8038 Iteration: 2261; Percent complete: 56.5%; Average loss: 3.1324 Iteration: 2262; Percent complete: 56.5%; Average loss: 3.1081 Iteration: 2263; Percent complete: 56.6%; Average loss: 3.2593 Iteration: 2264; Percent complete: 56.6%; Average loss: 3.0888 Iteration: 2265; Percent complete: 56.6%; Average loss: 3.0040 Iteration: 2266; Percent complete: 56.6%; Average loss: 3.0687 Iteration: 2267; Percent complete: 56.7%; Average loss: 2.9910 Iteration: 2268; Percent complete: 56.7%; Average loss: 2.9033 Iteration: 2269; Percent complete: 56.7%; Average loss: 2.9419 Iteration: 2270; Percent complete: 56.8%; Average loss: 2.9293 Iteration: 2271; Percent complete: 56.8%; Average loss: 3.0575 Iteration: 2272; Percent complete: 56.8%; Average loss: 2.9605 Iteration: 2273; Percent complete: 56.8%; Average loss: 3.0835 Iteration: 2274; Percent complete: 56.9%; Average loss: 3.3089 Iteration: 2275; Percent complete: 56.9%; Average loss: 3.1240 Iteration: 2276; Percent complete: 56.9%; Average loss: 2.9797 Iteration: 2277; Percent complete: 56.9%; Average loss: 2.9445 Iteration: 2278; Percent complete: 57.0%; Average loss: 3.1564 Iteration: 2279; Percent complete: 57.0%; Average loss: 2.9883 Iteration: 2280; Percent complete: 57.0%; Average loss: 3.0362 Iteration: 2281; Percent complete: 57.0%; Average loss: 2.9847 Iteration: 2282; Percent complete: 57.0%; Average loss: 3.1739 Iteration: 2283; Percent complete: 57.1%; Average loss: 2.9080 Iteration: 2284; Percent complete: 57.1%; Average loss: 3.1054 Iteration: 2285; Percent complete: 57.1%; Average loss: 3.1635 Iteration: 2286; Percent complete: 57.1%; Average loss: 3.2343 Iteration: 2287; Percent complete: 57.2%; Average loss: 3.0026 Iteration: 2288; Percent complete: 57.2%; Average loss: 3.0706 Iteration: 2289; Percent complete: 57.2%; Average loss: 3.3943 Iteration: 2290; Percent complete: 57.2%; Average loss: 3.2364 Iteration: 2291; Percent complete: 57.3%; Average loss: 3.0755 Iteration: 2292; Percent complete: 57.3%; Average loss: 3.4131 Iteration: 2293; Percent complete: 57.3%; Average loss: 3.0069 Iteration: 2294; Percent complete: 57.4%; Average loss: 3.0552 Iteration: 2295; Percent complete: 57.4%; Average loss: 2.9652 Iteration: 2296; Percent complete: 57.4%; Average loss: 2.9848 Iteration: 2297; Percent complete: 57.4%; Average loss: 3.0958 Iteration: 2298; Percent complete: 57.5%; Average loss: 3.0245 Iteration: 2299; Percent complete: 57.5%; Average loss: 3.1851 Iteration: 2300; Percent complete: 57.5%; Average loss: 2.9744 Iteration: 2301; Percent complete: 57.5%; Average loss: 2.9551 Iteration: 2302; Percent complete: 57.6%; Average loss: 3.2028 Iteration: 2303; Percent complete: 57.6%; Average loss: 3.0208 Iteration: 2304; Percent complete: 57.6%; Average loss: 3.0867 Iteration: 2305; Percent complete: 57.6%; Average loss: 3.1237 Iteration: 2306; Percent complete: 57.6%; Average loss: 2.8928 Iteration: 2307; Percent complete: 57.7%; Average loss: 2.8400 Iteration: 2308; Percent complete: 57.7%; Average loss: 3.0454 Iteration: 2309; Percent complete: 57.7%; Average loss: 3.2635 Iteration: 2310; Percent complete: 57.8%; Average loss: 3.1794 Iteration: 2311; Percent complete: 57.8%; Average loss: 2.9574 Iteration: 2312; Percent complete: 57.8%; Average loss: 3.2532 Iteration: 2313; Percent complete: 57.8%; Average loss: 3.0281 Iteration: 2314; Percent complete: 57.9%; Average loss: 3.3124 Iteration: 2315; Percent complete: 57.9%; Average loss: 3.0809 Iteration: 2316; Percent complete: 57.9%; Average loss: 3.0498 Iteration: 2317; Percent complete: 57.9%; Average loss: 3.1437 Iteration: 2318; Percent complete: 58.0%; Average loss: 3.1118 Iteration: 2319; Percent complete: 58.0%; Average loss: 3.0301 Iteration: 2320; Percent complete: 58.0%; Average loss: 3.1216 Iteration: 2321; Percent complete: 58.0%; Average loss: 3.1414 Iteration: 2322; Percent complete: 58.1%; Average loss: 3.0929 Iteration: 2323; Percent complete: 58.1%; Average loss: 2.7812 Iteration: 2324; Percent complete: 58.1%; Average loss: 2.8273 Iteration: 2325; Percent complete: 58.1%; Average loss: 2.9820 Iteration: 2326; Percent complete: 58.1%; Average loss: 3.2439 Iteration: 2327; Percent complete: 58.2%; Average loss: 2.9663 Iteration: 2328; Percent complete: 58.2%; Average loss: 2.8830 Iteration: 2329; Percent complete: 58.2%; Average loss: 2.9541 Iteration: 2330; Percent complete: 58.2%; Average loss: 3.1904 Iteration: 2331; Percent complete: 58.3%; Average loss: 3.1948 Iteration: 2332; Percent complete: 58.3%; Average loss: 2.6604 Iteration: 2333; Percent complete: 58.3%; Average loss: 3.2035 Iteration: 2334; Percent complete: 58.4%; Average loss: 3.0030 Iteration: 2335; Percent complete: 58.4%; Average loss: 2.9540 Iteration: 2336; Percent complete: 58.4%; Average loss: 3.0802 Iteration: 2337; Percent complete: 58.4%; Average loss: 2.9391 Iteration: 2338; Percent complete: 58.5%; Average loss: 3.1709 Iteration: 2339; Percent complete: 58.5%; Average loss: 3.0142 Iteration: 2340; Percent complete: 58.5%; Average loss: 3.1684 Iteration: 2341; Percent complete: 58.5%; Average loss: 3.0221 Iteration: 2342; Percent complete: 58.6%; Average loss: 3.2309 Iteration: 2343; Percent complete: 58.6%; Average loss: 2.9401 Iteration: 2344; Percent complete: 58.6%; Average loss: 2.9649 Iteration: 2345; Percent complete: 58.6%; Average loss: 3.0550 Iteration: 2346; Percent complete: 58.7%; Average loss: 3.1321 Iteration: 2347; Percent complete: 58.7%; Average loss: 2.9284 Iteration: 2348; Percent complete: 58.7%; Average loss: 3.2303 Iteration: 2349; Percent complete: 58.7%; Average loss: 2.9213 Iteration: 2350; Percent complete: 58.8%; Average loss: 3.0207 Iteration: 2351; Percent complete: 58.8%; Average loss: 3.2033 Iteration: 2352; Percent complete: 58.8%; Average loss: 2.9246 Iteration: 2353; Percent complete: 58.8%; Average loss: 3.3090 Iteration: 2354; Percent complete: 58.9%; Average loss: 3.0719 Iteration: 2355; Percent complete: 58.9%; Average loss: 3.2136 Iteration: 2356; Percent complete: 58.9%; Average loss: 3.1050 Iteration: 2357; Percent complete: 58.9%; Average loss: 3.0552 Iteration: 2358; Percent complete: 59.0%; Average loss: 3.0949 Iteration: 2359; Percent complete: 59.0%; Average loss: 2.9677 Iteration: 2360; Percent complete: 59.0%; Average loss: 2.9653 Iteration: 2361; Percent complete: 59.0%; Average loss: 3.0029 Iteration: 2362; Percent complete: 59.1%; Average loss: 3.2220 Iteration: 2363; Percent complete: 59.1%; Average loss: 3.2261 Iteration: 2364; Percent complete: 59.1%; Average loss: 3.1261 Iteration: 2365; Percent complete: 59.1%; Average loss: 2.9226 Iteration: 2366; Percent complete: 59.2%; Average loss: 3.0365 Iteration: 2367; Percent complete: 59.2%; Average loss: 2.8669 Iteration: 2368; Percent complete: 59.2%; Average loss: 2.8897 Iteration: 2369; Percent complete: 59.2%; Average loss: 2.9228 Iteration: 2370; Percent complete: 59.2%; Average loss: 2.8279 Iteration: 2371; Percent complete: 59.3%; Average loss: 3.0557 Iteration: 2372; Percent complete: 59.3%; Average loss: 2.9198 Iteration: 2373; Percent complete: 59.3%; Average loss: 2.7851 Iteration: 2374; Percent complete: 59.4%; Average loss: 3.1414 Iteration: 2375; Percent complete: 59.4%; Average loss: 3.0772 Iteration: 2376; Percent complete: 59.4%; Average loss: 3.0541 Iteration: 2377; Percent complete: 59.4%; Average loss: 3.2216 Iteration: 2378; Percent complete: 59.5%; Average loss: 3.2073 Iteration: 2379; Percent complete: 59.5%; Average loss: 3.3464 Iteration: 2380; Percent complete: 59.5%; Average loss: 2.9290 Iteration: 2381; Percent complete: 59.5%; Average loss: 2.9132 Iteration: 2382; Percent complete: 59.6%; Average loss: 3.0867 Iteration: 2383; Percent complete: 59.6%; Average loss: 3.1907 Iteration: 2384; Percent complete: 59.6%; Average loss: 2.7775 Iteration: 2385; Percent complete: 59.6%; Average loss: 3.3288 Iteration: 2386; Percent complete: 59.7%; Average loss: 3.3888 Iteration: 2387; Percent complete: 59.7%; Average loss: 2.9071 Iteration: 2388; Percent complete: 59.7%; Average loss: 3.0811 Iteration: 2389; Percent complete: 59.7%; Average loss: 2.7362 Iteration: 2390; Percent complete: 59.8%; Average loss: 3.0028 Iteration: 2391; Percent complete: 59.8%; Average loss: 3.0580 Iteration: 2392; Percent complete: 59.8%; Average loss: 3.1371 Iteration: 2393; Percent complete: 59.8%; Average loss: 3.1798 Iteration: 2394; Percent complete: 59.9%; Average loss: 3.0456 Iteration: 2395; Percent complete: 59.9%; Average loss: 3.0424 Iteration: 2396; Percent complete: 59.9%; Average loss: 3.0652 Iteration: 2397; Percent complete: 59.9%; Average loss: 3.1948 Iteration: 2398; Percent complete: 60.0%; Average loss: 3.1333 Iteration: 2399; Percent complete: 60.0%; Average loss: 3.1043 Iteration: 2400; Percent complete: 60.0%; Average loss: 3.2963 Iteration: 2401; Percent complete: 60.0%; Average loss: 2.9617 Iteration: 2402; Percent complete: 60.1%; Average loss: 3.0547 Iteration: 2403; Percent complete: 60.1%; Average loss: 3.1204 Iteration: 2404; Percent complete: 60.1%; Average loss: 3.3164 Iteration: 2405; Percent complete: 60.1%; Average loss: 2.9724 Iteration: 2406; Percent complete: 60.2%; Average loss: 3.0398 Iteration: 2407; Percent complete: 60.2%; Average loss: 3.2416 Iteration: 2408; Percent complete: 60.2%; Average loss: 2.9715 Iteration: 2409; Percent complete: 60.2%; Average loss: 3.1164 Iteration: 2410; Percent complete: 60.2%; Average loss: 3.0298 Iteration: 2411; Percent complete: 60.3%; Average loss: 2.8837 Iteration: 2412; Percent complete: 60.3%; Average loss: 3.1818 Iteration: 2413; Percent complete: 60.3%; Average loss: 2.9157 Iteration: 2414; Percent complete: 60.4%; Average loss: 3.0364 Iteration: 2415; Percent complete: 60.4%; Average loss: 3.0432 Iteration: 2416; Percent complete: 60.4%; Average loss: 2.8710 Iteration: 2417; Percent complete: 60.4%; Average loss: 3.3480 Iteration: 2418; Percent complete: 60.5%; Average loss: 3.0242 Iteration: 2419; Percent complete: 60.5%; Average loss: 3.0950 Iteration: 2420; Percent complete: 60.5%; Average loss: 3.0567 Iteration: 2421; Percent complete: 60.5%; Average loss: 3.0729 Iteration: 2422; Percent complete: 60.6%; Average loss: 3.1026 Iteration: 2423; Percent complete: 60.6%; Average loss: 3.1975 Iteration: 2424; Percent complete: 60.6%; Average loss: 2.8558 Iteration: 2425; Percent complete: 60.6%; Average loss: 3.0173 Iteration: 2426; Percent complete: 60.7%; Average loss: 2.8145 Iteration: 2427; Percent complete: 60.7%; Average loss: 2.6885 Iteration: 2428; Percent complete: 60.7%; Average loss: 2.8695 Iteration: 2429; Percent complete: 60.7%; Average loss: 2.9315 Iteration: 2430; Percent complete: 60.8%; Average loss: 3.0959 Iteration: 2431; Percent complete: 60.8%; Average loss: 2.8268 Iteration: 2432; Percent complete: 60.8%; Average loss: 2.8347 Iteration: 2433; Percent complete: 60.8%; Average loss: 3.0639 Iteration: 2434; Percent complete: 60.9%; Average loss: 2.8787 Iteration: 2435; Percent complete: 60.9%; Average loss: 3.0897 Iteration: 2436; Percent complete: 60.9%; Average loss: 3.1997 Iteration: 2437; Percent complete: 60.9%; Average loss: 3.1720 Iteration: 2438; Percent complete: 61.0%; Average loss: 3.3600 Iteration: 2439; Percent complete: 61.0%; Average loss: 2.9524 Iteration: 2440; Percent complete: 61.0%; Average loss: 3.1516 Iteration: 2441; Percent complete: 61.0%; Average loss: 3.3644 Iteration: 2442; Percent complete: 61.1%; Average loss: 3.4323 Iteration: 2443; Percent complete: 61.1%; Average loss: 2.9915 Iteration: 2444; Percent complete: 61.1%; Average loss: 2.9708 Iteration: 2445; Percent complete: 61.1%; Average loss: 2.9859 Iteration: 2446; Percent complete: 61.2%; Average loss: 2.9605 Iteration: 2447; Percent complete: 61.2%; Average loss: 3.0085 Iteration: 2448; Percent complete: 61.2%; Average loss: 3.0158 Iteration: 2449; Percent complete: 61.2%; Average loss: 3.1831 Iteration: 2450; Percent complete: 61.3%; Average loss: 2.8312 Iteration: 2451; Percent complete: 61.3%; Average loss: 2.9938 Iteration: 2452; Percent complete: 61.3%; Average loss: 3.2186 Iteration: 2453; Percent complete: 61.3%; Average loss: 2.8679 Iteration: 2454; Percent complete: 61.4%; Average loss: 2.9150 Iteration: 2455; Percent complete: 61.4%; Average loss: 2.9837 Iteration: 2456; Percent complete: 61.4%; Average loss: 3.1222 Iteration: 2457; Percent complete: 61.4%; Average loss: 3.1744 Iteration: 2458; Percent complete: 61.5%; Average loss: 3.0844 Iteration: 2459; Percent complete: 61.5%; Average loss: 2.8316 Iteration: 2460; Percent complete: 61.5%; Average loss: 3.2046 Iteration: 2461; Percent complete: 61.5%; Average loss: 2.8949 Iteration: 2462; Percent complete: 61.6%; Average loss: 3.0048 Iteration: 2463; Percent complete: 61.6%; Average loss: 2.9485 Iteration: 2464; Percent complete: 61.6%; Average loss: 2.8120 Iteration: 2465; Percent complete: 61.6%; Average loss: 2.8635 Iteration: 2466; Percent complete: 61.7%; Average loss: 2.9085 Iteration: 2467; Percent complete: 61.7%; Average loss: 3.1177 Iteration: 2468; Percent complete: 61.7%; Average loss: 3.3046 Iteration: 2469; Percent complete: 61.7%; Average loss: 2.9799 Iteration: 2470; Percent complete: 61.8%; Average loss: 3.1772 Iteration: 2471; Percent complete: 61.8%; Average loss: 3.0362 Iteration: 2472; Percent complete: 61.8%; Average loss: 3.0431 Iteration: 2473; Percent complete: 61.8%; Average loss: 3.1844 Iteration: 2474; Percent complete: 61.9%; Average loss: 2.9282 Iteration: 2475; Percent complete: 61.9%; Average loss: 2.9836 Iteration: 2476; Percent complete: 61.9%; Average loss: 3.1135 Iteration: 2477; Percent complete: 61.9%; Average loss: 3.0279 Iteration: 2478; Percent complete: 62.0%; Average loss: 3.0490 Iteration: 2479; Percent complete: 62.0%; Average loss: 3.3429 Iteration: 2480; Percent complete: 62.0%; Average loss: 2.8553 Iteration: 2481; Percent complete: 62.0%; Average loss: 3.0003 Iteration: 2482; Percent complete: 62.1%; Average loss: 2.9152 Iteration: 2483; Percent complete: 62.1%; Average loss: 3.0351 Iteration: 2484; Percent complete: 62.1%; Average loss: 3.2692 Iteration: 2485; Percent complete: 62.1%; Average loss: 2.9124 Iteration: 2486; Percent complete: 62.2%; Average loss: 2.7522 Iteration: 2487; Percent complete: 62.2%; Average loss: 3.1598 Iteration: 2488; Percent complete: 62.2%; Average loss: 2.9906 Iteration: 2489; Percent complete: 62.2%; Average loss: 3.1007 Iteration: 2490; Percent complete: 62.3%; Average loss: 3.1057 Iteration: 2491; Percent complete: 62.3%; Average loss: 3.1090 Iteration: 2492; Percent complete: 62.3%; Average loss: 3.0952 Iteration: 2493; Percent complete: 62.3%; Average loss: 3.0191 Iteration: 2494; Percent complete: 62.4%; Average loss: 2.9930 Iteration: 2495; Percent complete: 62.4%; Average loss: 3.0393 Iteration: 2496; Percent complete: 62.4%; Average loss: 2.8506 Iteration: 2497; Percent complete: 62.4%; Average loss: 3.1683 Iteration: 2498; Percent complete: 62.5%; Average loss: 2.4656 Iteration: 2499; Percent complete: 62.5%; Average loss: 2.7649 Iteration: 2500; Percent complete: 62.5%; Average loss: 2.9984 Iteration: 2501; Percent complete: 62.5%; Average loss: 2.9490 Iteration: 2502; Percent complete: 62.5%; Average loss: 3.1338 Iteration: 2503; Percent complete: 62.6%; Average loss: 2.9660 Iteration: 2504; Percent complete: 62.6%; Average loss: 2.9648 Iteration: 2505; Percent complete: 62.6%; Average loss: 3.0502 Iteration: 2506; Percent complete: 62.6%; Average loss: 3.1436 Iteration: 2507; Percent complete: 62.7%; Average loss: 3.0336 Iteration: 2508; Percent complete: 62.7%; Average loss: 2.9236 Iteration: 2509; Percent complete: 62.7%; Average loss: 3.1228 Iteration: 2510; Percent complete: 62.7%; Average loss: 3.0429 Iteration: 2511; Percent complete: 62.8%; Average loss: 3.1820 Iteration: 2512; Percent complete: 62.8%; Average loss: 2.7682 Iteration: 2513; Percent complete: 62.8%; Average loss: 3.1359 Iteration: 2514; Percent complete: 62.8%; Average loss: 2.8487 Iteration: 2515; Percent complete: 62.9%; Average loss: 2.9706 Iteration: 2516; Percent complete: 62.9%; Average loss: 3.4241 Iteration: 2517; Percent complete: 62.9%; Average loss: 2.9920 Iteration: 2518; Percent complete: 62.9%; Average loss: 2.8228 Iteration: 2519; Percent complete: 63.0%; Average loss: 3.0278 Iteration: 2520; Percent complete: 63.0%; Average loss: 2.8330 Iteration: 2521; Percent complete: 63.0%; Average loss: 3.1360 Iteration: 2522; Percent complete: 63.0%; Average loss: 2.9688 Iteration: 2523; Percent complete: 63.1%; Average loss: 2.8565 Iteration: 2524; Percent complete: 63.1%; Average loss: 2.8378 Iteration: 2525; Percent complete: 63.1%; Average loss: 2.8853 Iteration: 2526; Percent complete: 63.1%; Average loss: 2.8484 Iteration: 2527; Percent complete: 63.2%; Average loss: 2.9157 Iteration: 2528; Percent complete: 63.2%; Average loss: 2.8188 Iteration: 2529; Percent complete: 63.2%; Average loss: 3.1287 Iteration: 2530; Percent complete: 63.2%; Average loss: 2.9578 Iteration: 2531; Percent complete: 63.3%; Average loss: 2.9819 Iteration: 2532; Percent complete: 63.3%; Average loss: 3.0421 Iteration: 2533; Percent complete: 63.3%; Average loss: 2.9535 Iteration: 2534; Percent complete: 63.3%; Average loss: 3.0108 Iteration: 2535; Percent complete: 63.4%; Average loss: 3.0740 Iteration: 2536; Percent complete: 63.4%; Average loss: 2.9630 Iteration: 2537; Percent complete: 63.4%; Average loss: 2.8090 Iteration: 2538; Percent complete: 63.4%; Average loss: 2.8711 Iteration: 2539; Percent complete: 63.5%; Average loss: 3.0255 Iteration: 2540; Percent complete: 63.5%; Average loss: 3.0759 Iteration: 2541; Percent complete: 63.5%; Average loss: 3.3162 Iteration: 2542; Percent complete: 63.5%; Average loss: 2.7595 Iteration: 2543; Percent complete: 63.6%; Average loss: 2.8221 Iteration: 2544; Percent complete: 63.6%; Average loss: 3.0542 Iteration: 2545; Percent complete: 63.6%; Average loss: 2.8890 Iteration: 2546; Percent complete: 63.6%; Average loss: 3.0975 Iteration: 2547; Percent complete: 63.7%; Average loss: 2.9683 Iteration: 2548; Percent complete: 63.7%; Average loss: 3.1038 Iteration: 2549; Percent complete: 63.7%; Average loss: 2.8711 Iteration: 2550; Percent complete: 63.7%; Average loss: 3.0945 Iteration: 2551; Percent complete: 63.8%; Average loss: 3.2390 Iteration: 2552; Percent complete: 63.8%; Average loss: 2.9315 Iteration: 2553; Percent complete: 63.8%; Average loss: 3.0221 Iteration: 2554; Percent complete: 63.8%; Average loss: 2.9148 Iteration: 2555; Percent complete: 63.9%; Average loss: 2.8723 Iteration: 2556; Percent complete: 63.9%; Average loss: 2.9522 Iteration: 2557; Percent complete: 63.9%; Average loss: 3.0551 Iteration: 2558; Percent complete: 63.9%; Average loss: 3.0630 Iteration: 2559; Percent complete: 64.0%; Average loss: 3.0542 Iteration: 2560; Percent complete: 64.0%; Average loss: 3.3543 Iteration: 2561; Percent complete: 64.0%; Average loss: 2.9076 Iteration: 2562; Percent complete: 64.0%; Average loss: 3.3928 Iteration: 2563; Percent complete: 64.1%; Average loss: 2.8377 Iteration: 2564; Percent complete: 64.1%; Average loss: 3.0109 Iteration: 2565; Percent complete: 64.1%; Average loss: 3.0804 Iteration: 2566; Percent complete: 64.1%; Average loss: 3.1380 Iteration: 2567; Percent complete: 64.2%; Average loss: 3.0457 Iteration: 2568; Percent complete: 64.2%; Average loss: 3.1853 Iteration: 2569; Percent complete: 64.2%; Average loss: 3.2779 Iteration: 2570; Percent complete: 64.2%; Average loss: 3.0252 Iteration: 2571; Percent complete: 64.3%; Average loss: 2.7424 Iteration: 2572; Percent complete: 64.3%; Average loss: 2.9797 Iteration: 2573; Percent complete: 64.3%; Average loss: 2.8841 Iteration: 2574; Percent complete: 64.3%; Average loss: 2.9398 Iteration: 2575; Percent complete: 64.4%; Average loss: 2.8859 Iteration: 2576; Percent complete: 64.4%; Average loss: 3.0507 Iteration: 2577; Percent complete: 64.4%; Average loss: 3.0297 Iteration: 2578; Percent complete: 64.5%; Average loss: 2.7405 Iteration: 2579; Percent complete: 64.5%; Average loss: 2.8616 Iteration: 2580; Percent complete: 64.5%; Average loss: 2.8869 Iteration: 2581; Percent complete: 64.5%; Average loss: 2.8200 Iteration: 2582; Percent complete: 64.5%; Average loss: 3.2714 Iteration: 2583; Percent complete: 64.6%; Average loss: 3.1766 Iteration: 2584; Percent complete: 64.6%; Average loss: 3.0732 Iteration: 2585; Percent complete: 64.6%; Average loss: 3.0381 Iteration: 2586; Percent complete: 64.6%; Average loss: 3.0344 Iteration: 2587; Percent complete: 64.7%; Average loss: 3.1931 Iteration: 2588; Percent complete: 64.7%; Average loss: 3.1634 Iteration: 2589; Percent complete: 64.7%; Average loss: 2.9440 Iteration: 2590; Percent complete: 64.8%; Average loss: 3.1085 Iteration: 2591; Percent complete: 64.8%; Average loss: 2.9324 Iteration: 2592; Percent complete: 64.8%; Average loss: 2.9073 Iteration: 2593; Percent complete: 64.8%; Average loss: 3.0375 Iteration: 2594; Percent complete: 64.8%; Average loss: 2.9777 Iteration: 2595; Percent complete: 64.9%; Average loss: 2.8794 Iteration: 2596; Percent complete: 64.9%; Average loss: 2.8438 Iteration: 2597; Percent complete: 64.9%; Average loss: 2.9707 Iteration: 2598; Percent complete: 65.0%; Average loss: 2.8337 Iteration: 2599; Percent complete: 65.0%; Average loss: 3.1256 Iteration: 2600; Percent complete: 65.0%; Average loss: 2.9385 Iteration: 2601; Percent complete: 65.0%; Average loss: 2.8205 Iteration: 2602; Percent complete: 65.0%; Average loss: 2.9443 Iteration: 2603; Percent complete: 65.1%; Average loss: 3.0718 Iteration: 2604; Percent complete: 65.1%; Average loss: 2.8659 Iteration: 2605; Percent complete: 65.1%; Average loss: 3.0953 Iteration: 2606; Percent complete: 65.1%; Average loss: 2.9391 Iteration: 2607; Percent complete: 65.2%; Average loss: 3.1425 Iteration: 2608; Percent complete: 65.2%; Average loss: 3.1182 Iteration: 2609; Percent complete: 65.2%; Average loss: 2.9246 Iteration: 2610; Percent complete: 65.2%; Average loss: 3.2087 Iteration: 2611; Percent complete: 65.3%; Average loss: 3.0947 Iteration: 2612; Percent complete: 65.3%; Average loss: 3.0252 Iteration: 2613; Percent complete: 65.3%; Average loss: 3.2833 Iteration: 2614; Percent complete: 65.3%; Average loss: 3.0293 Iteration: 2615; Percent complete: 65.4%; Average loss: 2.7605 Iteration: 2616; Percent complete: 65.4%; Average loss: 3.1400 Iteration: 2617; Percent complete: 65.4%; Average loss: 3.1642 Iteration: 2618; Percent complete: 65.5%; Average loss: 3.1053 Iteration: 2619; Percent complete: 65.5%; Average loss: 3.0474 Iteration: 2620; Percent complete: 65.5%; Average loss: 2.8085 Iteration: 2621; Percent complete: 65.5%; Average loss: 3.1285 Iteration: 2622; Percent complete: 65.5%; Average loss: 3.1809 Iteration: 2623; Percent complete: 65.6%; Average loss: 3.3411 Iteration: 2624; Percent complete: 65.6%; Average loss: 2.9607 Iteration: 2625; Percent complete: 65.6%; Average loss: 3.4894 Iteration: 2626; Percent complete: 65.6%; Average loss: 3.2052 Iteration: 2627; Percent complete: 65.7%; Average loss: 2.9260 Iteration: 2628; Percent complete: 65.7%; Average loss: 2.8175 Iteration: 2629; Percent complete: 65.7%; Average loss: 3.0346 Iteration: 2630; Percent complete: 65.8%; Average loss: 3.1389 Iteration: 2631; Percent complete: 65.8%; Average loss: 3.0932 Iteration: 2632; Percent complete: 65.8%; Average loss: 3.0320 Iteration: 2633; Percent complete: 65.8%; Average loss: 3.0601 Iteration: 2634; Percent complete: 65.8%; Average loss: 2.9677 Iteration: 2635; Percent complete: 65.9%; Average loss: 3.0073 Iteration: 2636; Percent complete: 65.9%; Average loss: 2.8931 Iteration: 2637; Percent complete: 65.9%; Average loss: 2.8088 Iteration: 2638; Percent complete: 66.0%; Average loss: 3.2593 Iteration: 2639; Percent complete: 66.0%; Average loss: 2.8527 Iteration: 2640; Percent complete: 66.0%; Average loss: 3.0072 Iteration: 2641; Percent complete: 66.0%; Average loss: 3.0191 Iteration: 2642; Percent complete: 66.0%; Average loss: 2.8725 Iteration: 2643; Percent complete: 66.1%; Average loss: 2.9023 Iteration: 2644; Percent complete: 66.1%; Average loss: 2.8915 Iteration: 2645; Percent complete: 66.1%; Average loss: 2.9539 Iteration: 2646; Percent complete: 66.1%; Average loss: 2.8541 Iteration: 2647; Percent complete: 66.2%; Average loss: 2.7885 Iteration: 2648; Percent complete: 66.2%; Average loss: 3.2003 Iteration: 2649; Percent complete: 66.2%; Average loss: 2.7546 Iteration: 2650; Percent complete: 66.2%; Average loss: 3.1806 Iteration: 2651; Percent complete: 66.3%; Average loss: 2.7872 Iteration: 2652; Percent complete: 66.3%; Average loss: 3.0515 Iteration: 2653; Percent complete: 66.3%; Average loss: 3.1512 Iteration: 2654; Percent complete: 66.3%; Average loss: 2.9163 Iteration: 2655; Percent complete: 66.4%; Average loss: 3.2837 Iteration: 2656; Percent complete: 66.4%; Average loss: 3.1166 Iteration: 2657; Percent complete: 66.4%; Average loss: 2.9040 Iteration: 2658; Percent complete: 66.5%; Average loss: 3.0373 Iteration: 2659; Percent complete: 66.5%; Average loss: 3.0619 Iteration: 2660; Percent complete: 66.5%; Average loss: 2.7946 Iteration: 2661; Percent complete: 66.5%; Average loss: 2.8884 Iteration: 2662; Percent complete: 66.5%; Average loss: 2.9259 Iteration: 2663; Percent complete: 66.6%; Average loss: 2.7312 Iteration: 2664; Percent complete: 66.6%; Average loss: 3.0488 Iteration: 2665; Percent complete: 66.6%; Average loss: 2.9227 Iteration: 2666; Percent complete: 66.6%; Average loss: 2.8298 Iteration: 2667; Percent complete: 66.7%; Average loss: 3.1055 Iteration: 2668; Percent complete: 66.7%; Average loss: 2.9573 Iteration: 2669; Percent complete: 66.7%; Average loss: 2.9228 Iteration: 2670; Percent complete: 66.8%; Average loss: 3.0691 Iteration: 2671; Percent complete: 66.8%; Average loss: 3.0939 Iteration: 2672; Percent complete: 66.8%; Average loss: 3.0935 Iteration: 2673; Percent complete: 66.8%; Average loss: 3.0131 Iteration: 2674; Percent complete: 66.8%; Average loss: 2.5980 Iteration: 2675; Percent complete: 66.9%; Average loss: 3.0360 Iteration: 2676; Percent complete: 66.9%; Average loss: 2.9322 Iteration: 2677; Percent complete: 66.9%; Average loss: 3.1291 Iteration: 2678; Percent complete: 67.0%; Average loss: 2.7842 Iteration: 2679; Percent complete: 67.0%; Average loss: 3.1803 Iteration: 2680; Percent complete: 67.0%; Average loss: 2.8317 Iteration: 2681; Percent complete: 67.0%; Average loss: 2.7831 Iteration: 2682; Percent complete: 67.0%; Average loss: 2.9472 Iteration: 2683; Percent complete: 67.1%; Average loss: 2.9085 Iteration: 2684; Percent complete: 67.1%; Average loss: 2.8021 Iteration: 2685; Percent complete: 67.1%; Average loss: 2.9668 Iteration: 2686; Percent complete: 67.2%; Average loss: 3.1800 Iteration: 2687; Percent complete: 67.2%; Average loss: 2.8717 Iteration: 2688; Percent complete: 67.2%; Average loss: 2.9049 Iteration: 2689; Percent complete: 67.2%; Average loss: 2.9964 Iteration: 2690; Percent complete: 67.2%; Average loss: 3.1431 Iteration: 2691; Percent complete: 67.3%; Average loss: 2.9273 Iteration: 2692; Percent complete: 67.3%; Average loss: 2.9533 Iteration: 2693; Percent complete: 67.3%; Average loss: 3.0808 Iteration: 2694; Percent complete: 67.3%; Average loss: 3.0876 Iteration: 2695; Percent complete: 67.4%; Average loss: 3.1609 Iteration: 2696; Percent complete: 67.4%; Average loss: 2.8757 Iteration: 2697; Percent complete: 67.4%; Average loss: 3.2355 Iteration: 2698; Percent complete: 67.5%; Average loss: 3.2091 Iteration: 2699; Percent complete: 67.5%; Average loss: 2.9052 Iteration: 2700; Percent complete: 67.5%; Average loss: 2.7993 Iteration: 2701; Percent complete: 67.5%; Average loss: 2.9508 Iteration: 2702; Percent complete: 67.5%; Average loss: 2.9339 Iteration: 2703; Percent complete: 67.6%; Average loss: 3.0579 Iteration: 2704; Percent complete: 67.6%; Average loss: 3.1128 Iteration: 2705; Percent complete: 67.6%; Average loss: 3.0010 Iteration: 2706; Percent complete: 67.7%; Average loss: 3.0189 Iteration: 2707; Percent complete: 67.7%; Average loss: 2.9975 Iteration: 2708; Percent complete: 67.7%; Average loss: 2.9269 Iteration: 2709; Percent complete: 67.7%; Average loss: 2.9760 Iteration: 2710; Percent complete: 67.8%; Average loss: 3.0431 Iteration: 2711; Percent complete: 67.8%; Average loss: 3.1741 Iteration: 2712; Percent complete: 67.8%; Average loss: 3.0742 Iteration: 2713; Percent complete: 67.8%; Average loss: 2.9163 Iteration: 2714; Percent complete: 67.8%; Average loss: 2.7940 Iteration: 2715; Percent complete: 67.9%; Average loss: 2.9498 Iteration: 2716; Percent complete: 67.9%; Average loss: 3.1023 Iteration: 2717; Percent complete: 67.9%; Average loss: 3.0977 Iteration: 2718; Percent complete: 68.0%; Average loss: 3.1145 Iteration: 2719; Percent complete: 68.0%; Average loss: 2.9484 Iteration: 2720; Percent complete: 68.0%; Average loss: 2.9727 Iteration: 2721; Percent complete: 68.0%; Average loss: 3.1399 Iteration: 2722; Percent complete: 68.0%; Average loss: 3.0568 Iteration: 2723; Percent complete: 68.1%; Average loss: 2.8531 Iteration: 2724; Percent complete: 68.1%; Average loss: 2.6536 Iteration: 2725; Percent complete: 68.1%; Average loss: 2.9434 Iteration: 2726; Percent complete: 68.2%; Average loss: 2.7856 Iteration: 2727; Percent complete: 68.2%; Average loss: 2.9548 Iteration: 2728; Percent complete: 68.2%; Average loss: 2.7842 Iteration: 2729; Percent complete: 68.2%; Average loss: 2.7598 Iteration: 2730; Percent complete: 68.2%; Average loss: 2.8051 Iteration: 2731; Percent complete: 68.3%; Average loss: 2.8881 Iteration: 2732; Percent complete: 68.3%; Average loss: 2.8414 Iteration: 2733; Percent complete: 68.3%; Average loss: 2.9545 Iteration: 2734; Percent complete: 68.3%; Average loss: 2.9953 Iteration: 2735; Percent complete: 68.4%; Average loss: 2.7107 Iteration: 2736; Percent complete: 68.4%; Average loss: 2.9044 Iteration: 2737; Percent complete: 68.4%; Average loss: 2.9608 Iteration: 2738; Percent complete: 68.5%; Average loss: 2.9856 Iteration: 2739; Percent complete: 68.5%; Average loss: 2.9045 Iteration: 2740; Percent complete: 68.5%; Average loss: 3.0494 Iteration: 2741; Percent complete: 68.5%; Average loss: 3.0147 Iteration: 2742; Percent complete: 68.5%; Average loss: 2.9637 Iteration: 2743; Percent complete: 68.6%; Average loss: 2.8504 Iteration: 2744; Percent complete: 68.6%; Average loss: 2.9723 Iteration: 2745; Percent complete: 68.6%; Average loss: 3.0476 Iteration: 2746; Percent complete: 68.7%; Average loss: 2.9852 Iteration: 2747; Percent complete: 68.7%; Average loss: 2.7783 Iteration: 2748; Percent complete: 68.7%; Average loss: 2.9127 Iteration: 2749; Percent complete: 68.7%; Average loss: 2.8167 Iteration: 2750; Percent complete: 68.8%; Average loss: 2.8957 Iteration: 2751; Percent complete: 68.8%; Average loss: 2.7414 Iteration: 2752; Percent complete: 68.8%; Average loss: 3.1003 Iteration: 2753; Percent complete: 68.8%; Average loss: 2.8766 Iteration: 2754; Percent complete: 68.8%; Average loss: 2.9823 Iteration: 2755; Percent complete: 68.9%; Average loss: 3.1317 Iteration: 2756; Percent complete: 68.9%; Average loss: 2.9667 Iteration: 2757; Percent complete: 68.9%; Average loss: 3.0446 Iteration: 2758; Percent complete: 69.0%; Average loss: 2.9396 Iteration: 2759; Percent complete: 69.0%; Average loss: 2.8200 Iteration: 2760; Percent complete: 69.0%; Average loss: 3.1833 Iteration: 2761; Percent complete: 69.0%; Average loss: 2.8301 Iteration: 2762; Percent complete: 69.0%; Average loss: 2.8434 Iteration: 2763; Percent complete: 69.1%; Average loss: 2.7499 Iteration: 2764; Percent complete: 69.1%; Average loss: 2.7716 Iteration: 2765; Percent complete: 69.1%; Average loss: 3.0169 Iteration: 2766; Percent complete: 69.2%; Average loss: 3.0733 Iteration: 2767; Percent complete: 69.2%; Average loss: 3.0927 Iteration: 2768; Percent complete: 69.2%; Average loss: 2.9122 Iteration: 2769; Percent complete: 69.2%; Average loss: 3.1390 Iteration: 2770; Percent complete: 69.2%; Average loss: 3.0669 Iteration: 2771; Percent complete: 69.3%; Average loss: 2.9417 Iteration: 2772; Percent complete: 69.3%; Average loss: 2.7404 Iteration: 2773; Percent complete: 69.3%; Average loss: 3.1457 Iteration: 2774; Percent complete: 69.3%; Average loss: 2.8604 Iteration: 2775; Percent complete: 69.4%; Average loss: 2.8312 Iteration: 2776; Percent complete: 69.4%; Average loss: 2.7824 Iteration: 2777; Percent complete: 69.4%; Average loss: 3.2094 Iteration: 2778; Percent complete: 69.5%; Average loss: 2.9089 Iteration: 2779; Percent complete: 69.5%; Average loss: 3.0228 Iteration: 2780; Percent complete: 69.5%; Average loss: 3.2853 Iteration: 2781; Percent complete: 69.5%; Average loss: 2.8226 Iteration: 2782; Percent complete: 69.5%; Average loss: 3.0691 Iteration: 2783; Percent complete: 69.6%; Average loss: 3.2163 Iteration: 2784; Percent complete: 69.6%; Average loss: 3.1688 Iteration: 2785; Percent complete: 69.6%; Average loss: 3.0436 Iteration: 2786; Percent complete: 69.7%; Average loss: 2.8971 Iteration: 2787; Percent complete: 69.7%; Average loss: 2.9059 Iteration: 2788; Percent complete: 69.7%; Average loss: 3.1242 Iteration: 2789; Percent complete: 69.7%; Average loss: 2.8009 Iteration: 2790; Percent complete: 69.8%; Average loss: 2.8447 Iteration: 2791; Percent complete: 69.8%; Average loss: 2.7433 Iteration: 2792; Percent complete: 69.8%; Average loss: 2.6556 Iteration: 2793; Percent complete: 69.8%; Average loss: 2.9304 Iteration: 2794; Percent complete: 69.8%; Average loss: 3.2843 Iteration: 2795; Percent complete: 69.9%; Average loss: 2.8997 Iteration: 2796; Percent complete: 69.9%; Average loss: 2.8800 Iteration: 2797; Percent complete: 69.9%; Average loss: 2.7970 Iteration: 2798; Percent complete: 70.0%; Average loss: 3.0625 Iteration: 2799; Percent complete: 70.0%; Average loss: 2.8446 Iteration: 2800; Percent complete: 70.0%; Average loss: 2.9229 Iteration: 2801; Percent complete: 70.0%; Average loss: 2.8371 Iteration: 2802; Percent complete: 70.0%; Average loss: 2.9717 Iteration: 2803; Percent complete: 70.1%; Average loss: 3.0377 Iteration: 2804; Percent complete: 70.1%; Average loss: 3.1995 Iteration: 2805; Percent complete: 70.1%; Average loss: 2.7956 Iteration: 2806; Percent complete: 70.2%; Average loss: 2.9512 Iteration: 2807; Percent complete: 70.2%; Average loss: 2.9685 Iteration: 2808; Percent complete: 70.2%; Average loss: 2.8148 Iteration: 2809; Percent complete: 70.2%; Average loss: 3.1331 Iteration: 2810; Percent complete: 70.2%; Average loss: 3.1371 Iteration: 2811; Percent complete: 70.3%; Average loss: 3.0554 Iteration: 2812; Percent complete: 70.3%; Average loss: 2.7708 Iteration: 2813; Percent complete: 70.3%; Average loss: 2.8129 Iteration: 2814; Percent complete: 70.3%; Average loss: 2.6428 Iteration: 2815; Percent complete: 70.4%; Average loss: 2.8767 Iteration: 2816; Percent complete: 70.4%; Average loss: 3.0525 Iteration: 2817; Percent complete: 70.4%; Average loss: 2.9056 Iteration: 2818; Percent complete: 70.5%; Average loss: 2.8350 Iteration: 2819; Percent complete: 70.5%; Average loss: 2.7512 Iteration: 2820; Percent complete: 70.5%; Average loss: 2.9960 Iteration: 2821; Percent complete: 70.5%; Average loss: 3.0205 Iteration: 2822; Percent complete: 70.5%; Average loss: 2.9552 Iteration: 2823; Percent complete: 70.6%; Average loss: 2.9343 Iteration: 2824; Percent complete: 70.6%; Average loss: 2.8198 Iteration: 2825; Percent complete: 70.6%; Average loss: 2.9701 Iteration: 2826; Percent complete: 70.7%; Average loss: 2.9541 Iteration: 2827; Percent complete: 70.7%; Average loss: 3.0133 Iteration: 2828; Percent complete: 70.7%; Average loss: 2.9075 Iteration: 2829; Percent complete: 70.7%; Average loss: 2.9300 Iteration: 2830; Percent complete: 70.8%; Average loss: 2.9523 Iteration: 2831; Percent complete: 70.8%; Average loss: 2.9285 Iteration: 2832; Percent complete: 70.8%; Average loss: 2.8543 Iteration: 2833; Percent complete: 70.8%; Average loss: 2.6336 Iteration: 2834; Percent complete: 70.9%; Average loss: 2.8145 Iteration: 2835; Percent complete: 70.9%; Average loss: 2.8083 Iteration: 2836; Percent complete: 70.9%; Average loss: 2.9936 Iteration: 2837; Percent complete: 70.9%; Average loss: 2.9059 Iteration: 2838; Percent complete: 71.0%; Average loss: 2.7133 Iteration: 2839; Percent complete: 71.0%; Average loss: 2.7972 Iteration: 2840; Percent complete: 71.0%; Average loss: 3.0767 Iteration: 2841; Percent complete: 71.0%; Average loss: 2.9291 Iteration: 2842; Percent complete: 71.0%; Average loss: 3.1457 Iteration: 2843; Percent complete: 71.1%; Average loss: 2.9718 Iteration: 2844; Percent complete: 71.1%; Average loss: 2.9466 Iteration: 2845; Percent complete: 71.1%; Average loss: 3.0625 Iteration: 2846; Percent complete: 71.2%; Average loss: 2.6934 Iteration: 2847; Percent complete: 71.2%; Average loss: 3.2291 Iteration: 2848; Percent complete: 71.2%; Average loss: 2.7691 Iteration: 2849; Percent complete: 71.2%; Average loss: 2.9211 Iteration: 2850; Percent complete: 71.2%; Average loss: 2.9161 Iteration: 2851; Percent complete: 71.3%; Average loss: 2.8209 Iteration: 2852; Percent complete: 71.3%; Average loss: 2.9422 Iteration: 2853; Percent complete: 71.3%; Average loss: 2.9640 Iteration: 2854; Percent complete: 71.4%; Average loss: 2.9492 Iteration: 2855; Percent complete: 71.4%; Average loss: 2.9913 Iteration: 2856; Percent complete: 71.4%; Average loss: 2.6989 Iteration: 2857; Percent complete: 71.4%; Average loss: 2.7961 Iteration: 2858; Percent complete: 71.5%; Average loss: 2.7481 Iteration: 2859; Percent complete: 71.5%; Average loss: 2.7513 Iteration: 2860; Percent complete: 71.5%; Average loss: 3.0814 Iteration: 2861; Percent complete: 71.5%; Average loss: 3.0451 Iteration: 2862; Percent complete: 71.5%; Average loss: 3.1506 Iteration: 2863; Percent complete: 71.6%; Average loss: 3.1289 Iteration: 2864; Percent complete: 71.6%; Average loss: 3.0321 Iteration: 2865; Percent complete: 71.6%; Average loss: 2.8906 Iteration: 2866; Percent complete: 71.7%; Average loss: 3.0756 Iteration: 2867; Percent complete: 71.7%; Average loss: 2.8361 Iteration: 2868; Percent complete: 71.7%; Average loss: 2.9921 Iteration: 2869; Percent complete: 71.7%; Average loss: 2.8071 Iteration: 2870; Percent complete: 71.8%; Average loss: 2.8816 Iteration: 2871; Percent complete: 71.8%; Average loss: 2.9989 Iteration: 2872; Percent complete: 71.8%; Average loss: 2.9558 Iteration: 2873; Percent complete: 71.8%; Average loss: 2.8957 Iteration: 2874; Percent complete: 71.9%; Average loss: 2.8364 Iteration: 2875; Percent complete: 71.9%; Average loss: 2.8840 Iteration: 2876; Percent complete: 71.9%; Average loss: 2.7791 Iteration: 2877; Percent complete: 71.9%; Average loss: 3.1184 Iteration: 2878; Percent complete: 72.0%; Average loss: 2.9934 Iteration: 2879; Percent complete: 72.0%; Average loss: 2.9998 Iteration: 2880; Percent complete: 72.0%; Average loss: 3.1839 Iteration: 2881; Percent complete: 72.0%; Average loss: 2.6658 Iteration: 2882; Percent complete: 72.0%; Average loss: 2.8380 Iteration: 2883; Percent complete: 72.1%; Average loss: 3.0747 Iteration: 2884; Percent complete: 72.1%; Average loss: 3.0512 Iteration: 2885; Percent complete: 72.1%; Average loss: 2.9124 Iteration: 2886; Percent complete: 72.2%; Average loss: 2.9889 Iteration: 2887; Percent complete: 72.2%; Average loss: 3.0066 Iteration: 2888; Percent complete: 72.2%; Average loss: 3.0519 Iteration: 2889; Percent complete: 72.2%; Average loss: 3.1093 Iteration: 2890; Percent complete: 72.2%; Average loss: 2.5296 Iteration: 2891; Percent complete: 72.3%; Average loss: 2.8050 Iteration: 2892; Percent complete: 72.3%; Average loss: 3.0930 Iteration: 2893; Percent complete: 72.3%; Average loss: 2.9321 Iteration: 2894; Percent complete: 72.4%; Average loss: 2.7824 Iteration: 2895; Percent complete: 72.4%; Average loss: 3.0627 Iteration: 2896; Percent complete: 72.4%; Average loss: 2.9109 Iteration: 2897; Percent complete: 72.4%; Average loss: 3.1128 Iteration: 2898; Percent complete: 72.5%; Average loss: 3.0624 Iteration: 2899; Percent complete: 72.5%; Average loss: 2.8337 Iteration: 2900; Percent complete: 72.5%; Average loss: 2.9353 Iteration: 2901; Percent complete: 72.5%; Average loss: 2.8352 Iteration: 2902; Percent complete: 72.5%; Average loss: 2.8547 Iteration: 2903; Percent complete: 72.6%; Average loss: 2.7866 Iteration: 2904; Percent complete: 72.6%; Average loss: 2.9679 Iteration: 2905; Percent complete: 72.6%; Average loss: 2.7412 Iteration: 2906; Percent complete: 72.7%; Average loss: 2.9479 Iteration: 2907; Percent complete: 72.7%; Average loss: 3.0245 Iteration: 2908; Percent complete: 72.7%; Average loss: 2.9402 Iteration: 2909; Percent complete: 72.7%; Average loss: 3.1643 Iteration: 2910; Percent complete: 72.8%; Average loss: 2.9050 Iteration: 2911; Percent complete: 72.8%; Average loss: 2.8915 Iteration: 2912; Percent complete: 72.8%; Average loss: 2.9924 Iteration: 2913; Percent complete: 72.8%; Average loss: 2.9369 Iteration: 2914; Percent complete: 72.9%; Average loss: 2.8119 Iteration: 2915; Percent complete: 72.9%; Average loss: 3.0132 Iteration: 2916; Percent complete: 72.9%; Average loss: 2.8073 Iteration: 2917; Percent complete: 72.9%; Average loss: 2.8673 Iteration: 2918; Percent complete: 73.0%; Average loss: 2.9401 Iteration: 2919; Percent complete: 73.0%; Average loss: 3.0250 Iteration: 2920; Percent complete: 73.0%; Average loss: 2.8419 Iteration: 2921; Percent complete: 73.0%; Average loss: 2.9810 Iteration: 2922; Percent complete: 73.0%; Average loss: 3.1508 Iteration: 2923; Percent complete: 73.1%; Average loss: 2.8742 Iteration: 2924; Percent complete: 73.1%; Average loss: 3.0848 Iteration: 2925; Percent complete: 73.1%; Average loss: 3.0750 Iteration: 2926; Percent complete: 73.2%; Average loss: 3.0273 Iteration: 2927; Percent complete: 73.2%; Average loss: 2.9981 Iteration: 2928; Percent complete: 73.2%; Average loss: 3.0204 Iteration: 2929; Percent complete: 73.2%; Average loss: 2.8121 Iteration: 2930; Percent complete: 73.2%; Average loss: 2.8903 Iteration: 2931; Percent complete: 73.3%; Average loss: 2.6663 Iteration: 2932; Percent complete: 73.3%; Average loss: 2.8962 Iteration: 2933; Percent complete: 73.3%; Average loss: 2.9628 Iteration: 2934; Percent complete: 73.4%; Average loss: 2.8666 Iteration: 2935; Percent complete: 73.4%; Average loss: 2.9748 Iteration: 2936; Percent complete: 73.4%; Average loss: 2.8633 Iteration: 2937; Percent complete: 73.4%; Average loss: 2.7563 Iteration: 2938; Percent complete: 73.5%; Average loss: 3.0013 Iteration: 2939; Percent complete: 73.5%; Average loss: 2.9412 Iteration: 2940; Percent complete: 73.5%; Average loss: 3.0700 Iteration: 2941; Percent complete: 73.5%; Average loss: 3.0409 Iteration: 2942; Percent complete: 73.6%; Average loss: 2.9867 Iteration: 2943; Percent complete: 73.6%; Average loss: 2.7336 Iteration: 2944; Percent complete: 73.6%; Average loss: 3.1712 Iteration: 2945; Percent complete: 73.6%; Average loss: 2.9057 Iteration: 2946; Percent complete: 73.7%; Average loss: 2.5447 Iteration: 2947; Percent complete: 73.7%; Average loss: 2.8840 Iteration: 2948; Percent complete: 73.7%; Average loss: 2.8880 Iteration: 2949; Percent complete: 73.7%; Average loss: 2.9634 Iteration: 2950; Percent complete: 73.8%; Average loss: 2.7236 Iteration: 2951; Percent complete: 73.8%; Average loss: 2.8457 Iteration: 2952; Percent complete: 73.8%; Average loss: 2.9317 Iteration: 2953; Percent complete: 73.8%; Average loss: 2.7485 Iteration: 2954; Percent complete: 73.9%; Average loss: 2.9020 Iteration: 2955; Percent complete: 73.9%; Average loss: 2.8707 Iteration: 2956; Percent complete: 73.9%; Average loss: 2.8983 Iteration: 2957; Percent complete: 73.9%; Average loss: 2.7882 Iteration: 2958; Percent complete: 74.0%; Average loss: 2.8636 Iteration: 2959; Percent complete: 74.0%; Average loss: 2.9433 Iteration: 2960; Percent complete: 74.0%; Average loss: 2.8281 Iteration: 2961; Percent complete: 74.0%; Average loss: 2.7530 Iteration: 2962; Percent complete: 74.1%; Average loss: 2.8923 Iteration: 2963; Percent complete: 74.1%; Average loss: 2.9210 Iteration: 2964; Percent complete: 74.1%; Average loss: 2.9031 Iteration: 2965; Percent complete: 74.1%; Average loss: 2.8543 Iteration: 2966; Percent complete: 74.2%; Average loss: 3.0362 Iteration: 2967; Percent complete: 74.2%; Average loss: 2.8208 Iteration: 2968; Percent complete: 74.2%; Average loss: 2.9230 Iteration: 2969; Percent complete: 74.2%; Average loss: 2.7993 Iteration: 2970; Percent complete: 74.2%; Average loss: 3.0444 Iteration: 2971; Percent complete: 74.3%; Average loss: 2.9666 Iteration: 2972; Percent complete: 74.3%; Average loss: 3.0140 Iteration: 2973; Percent complete: 74.3%; Average loss: 2.9252 Iteration: 2974; Percent complete: 74.4%; Average loss: 2.9697 Iteration: 2975; Percent complete: 74.4%; Average loss: 2.9354 Iteration: 2976; Percent complete: 74.4%; Average loss: 2.9236 Iteration: 2977; Percent complete: 74.4%; Average loss: 2.8152 Iteration: 2978; Percent complete: 74.5%; Average loss: 3.0414 Iteration: 2979; Percent complete: 74.5%; Average loss: 2.9917 Iteration: 2980; Percent complete: 74.5%; Average loss: 2.7623 Iteration: 2981; Percent complete: 74.5%; Average loss: 2.9114 Iteration: 2982; Percent complete: 74.6%; Average loss: 3.0293 Iteration: 2983; Percent complete: 74.6%; Average loss: 2.7500 Iteration: 2984; Percent complete: 74.6%; Average loss: 3.0630 Iteration: 2985; Percent complete: 74.6%; Average loss: 2.9463 Iteration: 2986; Percent complete: 74.7%; Average loss: 2.7842 Iteration: 2987; Percent complete: 74.7%; Average loss: 2.8721 Iteration: 2988; Percent complete: 74.7%; Average loss: 2.9613 Iteration: 2989; Percent complete: 74.7%; Average loss: 2.7461 Iteration: 2990; Percent complete: 74.8%; Average loss: 2.6525 Iteration: 2991; Percent complete: 74.8%; Average loss: 3.0147 Iteration: 2992; Percent complete: 74.8%; Average loss: 2.7075 Iteration: 2993; Percent complete: 74.8%; Average loss: 2.8272 Iteration: 2994; Percent complete: 74.9%; Average loss: 2.9720 Iteration: 2995; Percent complete: 74.9%; Average loss: 2.8885 Iteration: 2996; Percent complete: 74.9%; Average loss: 2.7554 Iteration: 2997; Percent complete: 74.9%; Average loss: 2.7850 Iteration: 2998; Percent complete: 75.0%; Average loss: 2.7547 Iteration: 2999; Percent complete: 75.0%; Average loss: 2.8469 Iteration: 3000; Percent complete: 75.0%; Average loss: 2.8282 Iteration: 3001; Percent complete: 75.0%; Average loss: 3.0831 Iteration: 3002; Percent complete: 75.0%; Average loss: 2.9652 Iteration: 3003; Percent complete: 75.1%; Average loss: 2.7831 Iteration: 3004; Percent complete: 75.1%; Average loss: 2.7469 Iteration: 3005; Percent complete: 75.1%; Average loss: 2.9881 Iteration: 3006; Percent complete: 75.1%; Average loss: 2.8436 Iteration: 3007; Percent complete: 75.2%; Average loss: 2.6439 Iteration: 3008; Percent complete: 75.2%; Average loss: 3.0482 Iteration: 3009; Percent complete: 75.2%; Average loss: 3.0069 Iteration: 3010; Percent complete: 75.2%; Average loss: 2.8464 Iteration: 3011; Percent complete: 75.3%; Average loss: 2.6430 Iteration: 3012; Percent complete: 75.3%; Average loss: 2.9479 Iteration: 3013; Percent complete: 75.3%; Average loss: 2.7335 Iteration: 3014; Percent complete: 75.3%; Average loss: 2.7725 Iteration: 3015; Percent complete: 75.4%; Average loss: 2.7591 Iteration: 3016; Percent complete: 75.4%; Average loss: 2.6149 Iteration: 3017; Percent complete: 75.4%; Average loss: 3.0802 Iteration: 3018; Percent complete: 75.4%; Average loss: 2.7998 Iteration: 3019; Percent complete: 75.5%; Average loss: 2.8372 Iteration: 3020; Percent complete: 75.5%; Average loss: 2.7743 Iteration: 3021; Percent complete: 75.5%; Average loss: 3.1746 Iteration: 3022; Percent complete: 75.5%; Average loss: 2.9417 Iteration: 3023; Percent complete: 75.6%; Average loss: 2.7846 Iteration: 3024; Percent complete: 75.6%; Average loss: 2.9567 Iteration: 3025; Percent complete: 75.6%; Average loss: 2.9697 Iteration: 3026; Percent complete: 75.6%; Average loss: 2.7361 Iteration: 3027; Percent complete: 75.7%; Average loss: 2.8224 Iteration: 3028; Percent complete: 75.7%; Average loss: 2.9178 Iteration: 3029; Percent complete: 75.7%; Average loss: 2.8376 Iteration: 3030; Percent complete: 75.8%; Average loss: 2.8111 Iteration: 3031; Percent complete: 75.8%; Average loss: 2.6679 Iteration: 3032; Percent complete: 75.8%; Average loss: 2.7419 Iteration: 3033; Percent complete: 75.8%; Average loss: 3.2230 Iteration: 3034; Percent complete: 75.8%; Average loss: 2.9456 Iteration: 3035; Percent complete: 75.9%; Average loss: 3.0733 Iteration: 3036; Percent complete: 75.9%; Average loss: 2.7193 Iteration: 3037; Percent complete: 75.9%; Average loss: 2.8267 Iteration: 3038; Percent complete: 75.9%; Average loss: 2.9094 Iteration: 3039; Percent complete: 76.0%; Average loss: 2.7428 Iteration: 3040; Percent complete: 76.0%; Average loss: 2.9918 Iteration: 3041; Percent complete: 76.0%; Average loss: 2.8814 Iteration: 3042; Percent complete: 76.0%; Average loss: 3.0414 Iteration: 3043; Percent complete: 76.1%; Average loss: 2.7689 Iteration: 3044; Percent complete: 76.1%; Average loss: 2.9542 Iteration: 3045; Percent complete: 76.1%; Average loss: 3.0244 Iteration: 3046; Percent complete: 76.1%; Average loss: 2.6542 Iteration: 3047; Percent complete: 76.2%; Average loss: 2.6124 Iteration: 3048; Percent complete: 76.2%; Average loss: 3.1672 Iteration: 3049; Percent complete: 76.2%; Average loss: 2.9179 Iteration: 3050; Percent complete: 76.2%; Average loss: 2.7950 Iteration: 3051; Percent complete: 76.3%; Average loss: 2.8412 Iteration: 3052; Percent complete: 76.3%; Average loss: 2.8736 Iteration: 3053; Percent complete: 76.3%; Average loss: 2.6195 Iteration: 3054; Percent complete: 76.3%; Average loss: 3.0707 Iteration: 3055; Percent complete: 76.4%; Average loss: 2.8305 Iteration: 3056; Percent complete: 76.4%; Average loss: 2.8707 Iteration: 3057; Percent complete: 76.4%; Average loss: 2.7919 Iteration: 3058; Percent complete: 76.4%; Average loss: 3.1780 Iteration: 3059; Percent complete: 76.5%; Average loss: 2.9862 Iteration: 3060; Percent complete: 76.5%; Average loss: 2.8001 Iteration: 3061; Percent complete: 76.5%; Average loss: 2.7430 Iteration: 3062; Percent complete: 76.5%; Average loss: 2.8692 Iteration: 3063; Percent complete: 76.6%; Average loss: 2.8007 Iteration: 3064; Percent complete: 76.6%; Average loss: 2.8272 Iteration: 3065; Percent complete: 76.6%; Average loss: 2.5945 Iteration: 3066; Percent complete: 76.6%; Average loss: 3.1432 Iteration: 3067; Percent complete: 76.7%; Average loss: 2.6478 Iteration: 3068; Percent complete: 76.7%; Average loss: 2.6330 Iteration: 3069; Percent complete: 76.7%; Average loss: 2.8637 Iteration: 3070; Percent complete: 76.8%; Average loss: 2.8212 Iteration: 3071; Percent complete: 76.8%; Average loss: 2.6532 Iteration: 3072; Percent complete: 76.8%; Average loss: 2.7991 Iteration: 3073; Percent complete: 76.8%; Average loss: 2.9524 Iteration: 3074; Percent complete: 76.8%; Average loss: 2.8233 Iteration: 3075; Percent complete: 76.9%; Average loss: 2.7956 Iteration: 3076; Percent complete: 76.9%; Average loss: 3.2318 Iteration: 3077; Percent complete: 76.9%; Average loss: 2.8027 Iteration: 3078; Percent complete: 77.0%; Average loss: 2.6738 Iteration: 3079; Percent complete: 77.0%; Average loss: 2.9085 Iteration: 3080; Percent complete: 77.0%; Average loss: 2.7307 Iteration: 3081; Percent complete: 77.0%; Average loss: 2.8381 Iteration: 3082; Percent complete: 77.0%; Average loss: 2.9313 Iteration: 3083; Percent complete: 77.1%; Average loss: 2.8870 Iteration: 3084; Percent complete: 77.1%; Average loss: 3.2367 Iteration: 3085; Percent complete: 77.1%; Average loss: 2.8510 Iteration: 3086; Percent complete: 77.1%; Average loss: 2.7971 Iteration: 3087; Percent complete: 77.2%; Average loss: 2.9291 Iteration: 3088; Percent complete: 77.2%; Average loss: 2.8868 Iteration: 3089; Percent complete: 77.2%; Average loss: 2.8716 Iteration: 3090; Percent complete: 77.2%; Average loss: 2.6318 Iteration: 3091; Percent complete: 77.3%; Average loss: 2.8273 Iteration: 3092; Percent complete: 77.3%; Average loss: 2.8466 Iteration: 3093; Percent complete: 77.3%; Average loss: 2.8467 Iteration: 3094; Percent complete: 77.3%; Average loss: 2.6930 Iteration: 3095; Percent complete: 77.4%; Average loss: 2.8982 Iteration: 3096; Percent complete: 77.4%; Average loss: 2.8836 Iteration: 3097; Percent complete: 77.4%; Average loss: 2.8659 Iteration: 3098; Percent complete: 77.5%; Average loss: 2.9494 Iteration: 3099; Percent complete: 77.5%; Average loss: 2.9952 Iteration: 3100; Percent complete: 77.5%; Average loss: 3.0148 Iteration: 3101; Percent complete: 77.5%; Average loss: 2.9342 Iteration: 3102; Percent complete: 77.5%; Average loss: 2.8408 Iteration: 3103; Percent complete: 77.6%; Average loss: 2.9748 Iteration: 3104; Percent complete: 77.6%; Average loss: 2.9545 Iteration: 3105; Percent complete: 77.6%; Average loss: 2.9361 Iteration: 3106; Percent complete: 77.6%; Average loss: 2.7132 Iteration: 3107; Percent complete: 77.7%; Average loss: 2.9999 Iteration: 3108; Percent complete: 77.7%; Average loss: 2.8489 Iteration: 3109; Percent complete: 77.7%; Average loss: 2.8386 Iteration: 3110; Percent complete: 77.8%; Average loss: 3.2130 Iteration: 3111; Percent complete: 77.8%; Average loss: 3.1164 Iteration: 3112; Percent complete: 77.8%; Average loss: 2.6241 Iteration: 3113; Percent complete: 77.8%; Average loss: 2.9167 Iteration: 3114; Percent complete: 77.8%; Average loss: 3.1510 Iteration: 3115; Percent complete: 77.9%; Average loss: 2.6926 Iteration: 3116; Percent complete: 77.9%; Average loss: 2.7959 Iteration: 3117; Percent complete: 77.9%; Average loss: 2.9571 Iteration: 3118; Percent complete: 78.0%; Average loss: 2.8444 Iteration: 3119; Percent complete: 78.0%; Average loss: 2.8810 Iteration: 3120; Percent complete: 78.0%; Average loss: 2.7874 Iteration: 3121; Percent complete: 78.0%; Average loss: 2.5753 Iteration: 3122; Percent complete: 78.0%; Average loss: 2.8261 Iteration: 3123; Percent complete: 78.1%; Average loss: 2.6679 Iteration: 3124; Percent complete: 78.1%; Average loss: 3.1612 Iteration: 3125; Percent complete: 78.1%; Average loss: 2.7879 Iteration: 3126; Percent complete: 78.1%; Average loss: 2.7917 Iteration: 3127; Percent complete: 78.2%; Average loss: 2.8387 Iteration: 3128; Percent complete: 78.2%; Average loss: 3.0720 Iteration: 3129; Percent complete: 78.2%; Average loss: 2.8187 Iteration: 3130; Percent complete: 78.2%; Average loss: 2.8297 Iteration: 3131; Percent complete: 78.3%; Average loss: 3.0173 Iteration: 3132; Percent complete: 78.3%; Average loss: 2.7026 Iteration: 3133; Percent complete: 78.3%; Average loss: 2.6394 Iteration: 3134; Percent complete: 78.3%; Average loss: 2.7500 Iteration: 3135; Percent complete: 78.4%; Average loss: 2.8380 Iteration: 3136; Percent complete: 78.4%; Average loss: 2.8867 Iteration: 3137; Percent complete: 78.4%; Average loss: 2.9807 Iteration: 3138; Percent complete: 78.5%; Average loss: 2.7376 Iteration: 3139; Percent complete: 78.5%; Average loss: 2.4840 Iteration: 3140; Percent complete: 78.5%; Average loss: 2.8758 Iteration: 3141; Percent complete: 78.5%; Average loss: 2.8837 Iteration: 3142; Percent complete: 78.5%; Average loss: 3.0677 Iteration: 3143; Percent complete: 78.6%; Average loss: 3.0552 Iteration: 3144; Percent complete: 78.6%; Average loss: 2.4899 Iteration: 3145; Percent complete: 78.6%; Average loss: 2.7634 Iteration: 3146; Percent complete: 78.6%; Average loss: 3.0813 Iteration: 3147; Percent complete: 78.7%; Average loss: 2.8954 Iteration: 3148; Percent complete: 78.7%; Average loss: 2.7874 Iteration: 3149; Percent complete: 78.7%; Average loss: 2.6527 Iteration: 3150; Percent complete: 78.8%; Average loss: 2.9295 Iteration: 3151; Percent complete: 78.8%; Average loss: 2.7891 Iteration: 3152; Percent complete: 78.8%; Average loss: 2.9470 Iteration: 3153; Percent complete: 78.8%; Average loss: 2.7560 Iteration: 3154; Percent complete: 78.8%; Average loss: 3.0068 Iteration: 3155; Percent complete: 78.9%; Average loss: 2.9679 Iteration: 3156; Percent complete: 78.9%; Average loss: 2.7689 Iteration: 3157; Percent complete: 78.9%; Average loss: 2.8527 Iteration: 3158; Percent complete: 79.0%; Average loss: 2.6437 Iteration: 3159; Percent complete: 79.0%; Average loss: 2.8582 Iteration: 3160; Percent complete: 79.0%; Average loss: 2.8749 Iteration: 3161; Percent complete: 79.0%; Average loss: 2.8326 Iteration: 3162; Percent complete: 79.0%; Average loss: 2.9197 Iteration: 3163; Percent complete: 79.1%; Average loss: 2.9054 Iteration: 3164; Percent complete: 79.1%; Average loss: 2.6695 Iteration: 3165; Percent complete: 79.1%; Average loss: 3.1475 Iteration: 3166; Percent complete: 79.1%; Average loss: 2.7390 Iteration: 3167; Percent complete: 79.2%; Average loss: 2.8018 Iteration: 3168; Percent complete: 79.2%; Average loss: 2.8767 Iteration: 3169; Percent complete: 79.2%; Average loss: 2.8655 Iteration: 3170; Percent complete: 79.2%; Average loss: 2.9125 Iteration: 3171; Percent complete: 79.3%; Average loss: 2.8125 Iteration: 3172; Percent complete: 79.3%; Average loss: 2.9108 Iteration: 3173; Percent complete: 79.3%; Average loss: 3.0362 Iteration: 3174; Percent complete: 79.3%; Average loss: 2.9374 Iteration: 3175; Percent complete: 79.4%; Average loss: 2.8197 Iteration: 3176; Percent complete: 79.4%; Average loss: 2.7805 Iteration: 3177; Percent complete: 79.4%; Average loss: 2.8113 Iteration: 3178; Percent complete: 79.5%; Average loss: 3.0037 Iteration: 3179; Percent complete: 79.5%; Average loss: 2.7946 Iteration: 3180; Percent complete: 79.5%; Average loss: 2.7468 Iteration: 3181; Percent complete: 79.5%; Average loss: 2.8161 Iteration: 3182; Percent complete: 79.5%; Average loss: 2.9773 Iteration: 3183; Percent complete: 79.6%; Average loss: 2.8886 Iteration: 3184; Percent complete: 79.6%; Average loss: 3.0297 Iteration: 3185; Percent complete: 79.6%; Average loss: 2.8494 Iteration: 3186; Percent complete: 79.7%; Average loss: 2.8107 Iteration: 3187; Percent complete: 79.7%; Average loss: 2.9039 Iteration: 3188; Percent complete: 79.7%; Average loss: 2.8804 Iteration: 3189; Percent complete: 79.7%; Average loss: 2.7417 Iteration: 3190; Percent complete: 79.8%; Average loss: 2.8430 Iteration: 3191; Percent complete: 79.8%; Average loss: 2.9383 Iteration: 3192; Percent complete: 79.8%; Average loss: 2.8879 Iteration: 3193; Percent complete: 79.8%; Average loss: 2.9975 Iteration: 3194; Percent complete: 79.8%; Average loss: 2.6798 Iteration: 3195; Percent complete: 79.9%; Average loss: 2.8963 Iteration: 3196; Percent complete: 79.9%; Average loss: 2.7254 Iteration: 3197; Percent complete: 79.9%; Average loss: 2.7485 Iteration: 3198; Percent complete: 80.0%; Average loss: 2.8010 Iteration: 3199; Percent complete: 80.0%; Average loss: 2.7663 Iteration: 3200; Percent complete: 80.0%; Average loss: 2.8583 Iteration: 3201; Percent complete: 80.0%; Average loss: 2.7998 Iteration: 3202; Percent complete: 80.0%; Average loss: 2.5402 Iteration: 3203; Percent complete: 80.1%; Average loss: 2.9994 Iteration: 3204; Percent complete: 80.1%; Average loss: 2.7330 Iteration: 3205; Percent complete: 80.1%; Average loss: 2.8646 Iteration: 3206; Percent complete: 80.2%; Average loss: 2.7958 Iteration: 3207; Percent complete: 80.2%; Average loss: 3.3365 Iteration: 3208; Percent complete: 80.2%; Average loss: 3.0365 Iteration: 3209; Percent complete: 80.2%; Average loss: 2.9799 Iteration: 3210; Percent complete: 80.2%; Average loss: 2.9156 Iteration: 3211; Percent complete: 80.3%; Average loss: 2.8053 Iteration: 3212; Percent complete: 80.3%; Average loss: 2.7283 Iteration: 3213; Percent complete: 80.3%; Average loss: 2.7490 Iteration: 3214; Percent complete: 80.3%; Average loss: 2.7570 Iteration: 3215; Percent complete: 80.4%; Average loss: 2.8602 Iteration: 3216; Percent complete: 80.4%; Average loss: 2.8436 Iteration: 3217; Percent complete: 80.4%; Average loss: 2.8307 Iteration: 3218; Percent complete: 80.5%; Average loss: 2.8564 Iteration: 3219; Percent complete: 80.5%; Average loss: 2.7426 Iteration: 3220; Percent complete: 80.5%; Average loss: 2.7895 Iteration: 3221; Percent complete: 80.5%; Average loss: 3.0591 Iteration: 3222; Percent complete: 80.5%; Average loss: 2.7863 Iteration: 3223; Percent complete: 80.6%; Average loss: 2.9171 Iteration: 3224; Percent complete: 80.6%; Average loss: 2.9662 Iteration: 3225; Percent complete: 80.6%; Average loss: 2.7883 Iteration: 3226; Percent complete: 80.7%; Average loss: 2.7951 Iteration: 3227; Percent complete: 80.7%; Average loss: 2.7132 Iteration: 3228; Percent complete: 80.7%; Average loss: 3.1547 Iteration: 3229; Percent complete: 80.7%; Average loss: 2.8672 Iteration: 3230; Percent complete: 80.8%; Average loss: 2.6837 Iteration: 3231; Percent complete: 80.8%; Average loss: 2.9999 Iteration: 3232; Percent complete: 80.8%; Average loss: 2.8912 Iteration: 3233; Percent complete: 80.8%; Average loss: 3.0033 Iteration: 3234; Percent complete: 80.8%; Average loss: 2.7595 Iteration: 3235; Percent complete: 80.9%; Average loss: 2.8805 Iteration: 3236; Percent complete: 80.9%; Average loss: 2.6334 Iteration: 3237; Percent complete: 80.9%; Average loss: 2.8380 Iteration: 3238; Percent complete: 81.0%; Average loss: 2.8230 Iteration: 3239; Percent complete: 81.0%; Average loss: 2.9149 Iteration: 3240; Percent complete: 81.0%; Average loss: 2.6590 Iteration: 3241; Percent complete: 81.0%; Average loss: 2.7990 Iteration: 3242; Percent complete: 81.0%; Average loss: 2.7058 Iteration: 3243; Percent complete: 81.1%; Average loss: 2.5856 Iteration: 3244; Percent complete: 81.1%; Average loss: 2.7917 Iteration: 3245; Percent complete: 81.1%; Average loss: 2.8363 Iteration: 3246; Percent complete: 81.2%; Average loss: 2.8531 Iteration: 3247; Percent complete: 81.2%; Average loss: 2.7992 Iteration: 3248; Percent complete: 81.2%; Average loss: 2.7178 Iteration: 3249; Percent complete: 81.2%; Average loss: 2.9234 Iteration: 3250; Percent complete: 81.2%; Average loss: 2.7780 Iteration: 3251; Percent complete: 81.3%; Average loss: 2.7860 Iteration: 3252; Percent complete: 81.3%; Average loss: 2.7052 Iteration: 3253; Percent complete: 81.3%; Average loss: 2.8543 Iteration: 3254; Percent complete: 81.3%; Average loss: 2.6858 Iteration: 3255; Percent complete: 81.4%; Average loss: 2.8488 Iteration: 3256; Percent complete: 81.4%; Average loss: 3.1003 Iteration: 3257; Percent complete: 81.4%; Average loss: 2.9277 Iteration: 3258; Percent complete: 81.5%; Average loss: 2.8443 Iteration: 3259; Percent complete: 81.5%; Average loss: 2.6874 Iteration: 3260; Percent complete: 81.5%; Average loss: 3.1262 Iteration: 3261; Percent complete: 81.5%; Average loss: 2.9853 Iteration: 3262; Percent complete: 81.5%; Average loss: 2.7785 Iteration: 3263; Percent complete: 81.6%; Average loss: 2.7791 Iteration: 3264; Percent complete: 81.6%; Average loss: 2.8995 Iteration: 3265; Percent complete: 81.6%; Average loss: 3.0857 Iteration: 3266; Percent complete: 81.7%; Average loss: 2.9617 Iteration: 3267; Percent complete: 81.7%; Average loss: 2.6720 Iteration: 3268; Percent complete: 81.7%; Average loss: 2.7689 Iteration: 3269; Percent complete: 81.7%; Average loss: 2.7804 Iteration: 3270; Percent complete: 81.8%; Average loss: 2.6876 Iteration: 3271; Percent complete: 81.8%; Average loss: 2.7898 Iteration: 3272; Percent complete: 81.8%; Average loss: 2.8369 Iteration: 3273; Percent complete: 81.8%; Average loss: 3.0629 Iteration: 3274; Percent complete: 81.8%; Average loss: 2.6637 Iteration: 3275; Percent complete: 81.9%; Average loss: 2.8890 Iteration: 3276; Percent complete: 81.9%; Average loss: 2.8434 Iteration: 3277; Percent complete: 81.9%; Average loss: 2.6713 Iteration: 3278; Percent complete: 82.0%; Average loss: 3.0756 Iteration: 3279; Percent complete: 82.0%; Average loss: 2.6905 Iteration: 3280; Percent complete: 82.0%; Average loss: 2.8295 Iteration: 3281; Percent complete: 82.0%; Average loss: 2.6927 Iteration: 3282; Percent complete: 82.0%; Average loss: 2.9227 Iteration: 3283; Percent complete: 82.1%; Average loss: 2.6831 Iteration: 3284; Percent complete: 82.1%; Average loss: 2.9662 Iteration: 3285; Percent complete: 82.1%; Average loss: 2.7301 Iteration: 3286; Percent complete: 82.2%; Average loss: 2.8067 Iteration: 3287; Percent complete: 82.2%; Average loss: 2.8800 Iteration: 3288; Percent complete: 82.2%; Average loss: 2.8194 Iteration: 3289; Percent complete: 82.2%; Average loss: 2.7150 Iteration: 3290; Percent complete: 82.2%; Average loss: 2.8220 Iteration: 3291; Percent complete: 82.3%; Average loss: 2.9557 Iteration: 3292; Percent complete: 82.3%; Average loss: 2.6632 Iteration: 3293; Percent complete: 82.3%; Average loss: 2.8111 Iteration: 3294; Percent complete: 82.3%; Average loss: 2.8301 Iteration: 3295; Percent complete: 82.4%; Average loss: 2.9937 Iteration: 3296; Percent complete: 82.4%; Average loss: 2.8381 Iteration: 3297; Percent complete: 82.4%; Average loss: 2.9167 Iteration: 3298; Percent complete: 82.5%; Average loss: 2.8119 Iteration: 3299; Percent complete: 82.5%; Average loss: 2.8534 Iteration: 3300; Percent complete: 82.5%; Average loss: 2.9071 Iteration: 3301; Percent complete: 82.5%; Average loss: 3.1508 Iteration: 3302; Percent complete: 82.5%; Average loss: 2.6029 Iteration: 3303; Percent complete: 82.6%; Average loss: 2.5817 Iteration: 3304; Percent complete: 82.6%; Average loss: 2.9339 Iteration: 3305; Percent complete: 82.6%; Average loss: 2.3718 Iteration: 3306; Percent complete: 82.7%; Average loss: 3.1216 Iteration: 3307; Percent complete: 82.7%; Average loss: 2.7722 Iteration: 3308; Percent complete: 82.7%; Average loss: 2.7932 Iteration: 3309; Percent complete: 82.7%; Average loss: 2.7034 Iteration: 3310; Percent complete: 82.8%; Average loss: 2.9023 Iteration: 3311; Percent complete: 82.8%; Average loss: 2.5981 Iteration: 3312; Percent complete: 82.8%; Average loss: 2.4829 Iteration: 3313; Percent complete: 82.8%; Average loss: 2.6522 Iteration: 3314; Percent complete: 82.8%; Average loss: 2.7894 Iteration: 3315; Percent complete: 82.9%; Average loss: 2.7246 Iteration: 3316; Percent complete: 82.9%; Average loss: 2.7431 Iteration: 3317; Percent complete: 82.9%; Average loss: 2.5507 Iteration: 3318; Percent complete: 83.0%; Average loss: 2.6924 Iteration: 3319; Percent complete: 83.0%; Average loss: 2.7667 Iteration: 3320; Percent complete: 83.0%; Average loss: 2.7176 Iteration: 3321; Percent complete: 83.0%; Average loss: 2.9334 Iteration: 3322; Percent complete: 83.0%; Average loss: 2.9057 Iteration: 3323; Percent complete: 83.1%; Average loss: 2.5616 Iteration: 3324; Percent complete: 83.1%; Average loss: 2.6570 Iteration: 3325; Percent complete: 83.1%; Average loss: 2.8218 Iteration: 3326; Percent complete: 83.2%; Average loss: 2.8700 Iteration: 3327; Percent complete: 83.2%; Average loss: 2.9319 Iteration: 3328; Percent complete: 83.2%; Average loss: 2.6210 Iteration: 3329; Percent complete: 83.2%; Average loss: 2.7594 Iteration: 3330; Percent complete: 83.2%; Average loss: 2.9268 Iteration: 3331; Percent complete: 83.3%; Average loss: 2.8013 Iteration: 3332; Percent complete: 83.3%; Average loss: 3.0036 Iteration: 3333; Percent complete: 83.3%; Average loss: 2.8354 Iteration: 3334; Percent complete: 83.4%; Average loss: 2.6794 Iteration: 3335; Percent complete: 83.4%; Average loss: 2.7852 Iteration: 3336; Percent complete: 83.4%; Average loss: 2.8113 Iteration: 3337; Percent complete: 83.4%; Average loss: 2.7246 Iteration: 3338; Percent complete: 83.5%; Average loss: 2.7522 Iteration: 3339; Percent complete: 83.5%; Average loss: 3.1075 Iteration: 3340; Percent complete: 83.5%; Average loss: 2.9154 Iteration: 3341; Percent complete: 83.5%; Average loss: 2.7992 Iteration: 3342; Percent complete: 83.5%; Average loss: 2.8743 Iteration: 3343; Percent complete: 83.6%; Average loss: 2.6670 Iteration: 3344; Percent complete: 83.6%; Average loss: 2.6490 Iteration: 3345; Percent complete: 83.6%; Average loss: 2.7760 Iteration: 3346; Percent complete: 83.7%; Average loss: 2.9184 Iteration: 3347; Percent complete: 83.7%; Average loss: 2.7528 Iteration: 3348; Percent complete: 83.7%; Average loss: 2.4730 Iteration: 3349; Percent complete: 83.7%; Average loss: 2.8697 Iteration: 3350; Percent complete: 83.8%; Average loss: 2.7483 Iteration: 3351; Percent complete: 83.8%; Average loss: 2.8558 Iteration: 3352; Percent complete: 83.8%; Average loss: 2.7468 Iteration: 3353; Percent complete: 83.8%; Average loss: 2.9887 Iteration: 3354; Percent complete: 83.9%; Average loss: 2.7144 Iteration: 3355; Percent complete: 83.9%; Average loss: 2.7438 Iteration: 3356; Percent complete: 83.9%; Average loss: 2.7265 Iteration: 3357; Percent complete: 83.9%; Average loss: 2.6550 Iteration: 3358; Percent complete: 84.0%; Average loss: 2.8455 Iteration: 3359; Percent complete: 84.0%; Average loss: 3.0653 Iteration: 3360; Percent complete: 84.0%; Average loss: 2.7794 Iteration: 3361; Percent complete: 84.0%; Average loss: 2.6366 Iteration: 3362; Percent complete: 84.0%; Average loss: 2.8899 Iteration: 3363; Percent complete: 84.1%; Average loss: 2.6677 Iteration: 3364; Percent complete: 84.1%; Average loss: 3.0063 Iteration: 3365; Percent complete: 84.1%; Average loss: 2.8526 Iteration: 3366; Percent complete: 84.2%; Average loss: 2.8927 Iteration: 3367; Percent complete: 84.2%; Average loss: 2.9466 Iteration: 3368; Percent complete: 84.2%; Average loss: 2.8311 Iteration: 3369; Percent complete: 84.2%; Average loss: 3.0405 Iteration: 3370; Percent complete: 84.2%; Average loss: 2.6895 Iteration: 3371; Percent complete: 84.3%; Average loss: 2.8053 Iteration: 3372; Percent complete: 84.3%; Average loss: 3.0343 Iteration: 3373; Percent complete: 84.3%; Average loss: 3.0454 Iteration: 3374; Percent complete: 84.4%; Average loss: 2.7633 Iteration: 3375; Percent complete: 84.4%; Average loss: 2.8754 Iteration: 3376; Percent complete: 84.4%; Average loss: 2.8067 Iteration: 3377; Percent complete: 84.4%; Average loss: 3.0773 Iteration: 3378; Percent complete: 84.5%; Average loss: 2.7460 Iteration: 3379; Percent complete: 84.5%; Average loss: 2.5689 Iteration: 3380; Percent complete: 84.5%; Average loss: 3.0096 Iteration: 3381; Percent complete: 84.5%; Average loss: 2.6598 Iteration: 3382; Percent complete: 84.5%; Average loss: 2.7262 Iteration: 3383; Percent complete: 84.6%; Average loss: 2.8561 Iteration: 3384; Percent complete: 84.6%; Average loss: 2.9678 Iteration: 3385; Percent complete: 84.6%; Average loss: 2.5600 Iteration: 3386; Percent complete: 84.7%; Average loss: 2.8182 Iteration: 3387; Percent complete: 84.7%; Average loss: 2.8777 Iteration: 3388; Percent complete: 84.7%; Average loss: 2.7512 Iteration: 3389; Percent complete: 84.7%; Average loss: 2.8389 Iteration: 3390; Percent complete: 84.8%; Average loss: 2.5724 Iteration: 3391; Percent complete: 84.8%; Average loss: 2.8303 Iteration: 3392; Percent complete: 84.8%; Average loss: 2.7552 Iteration: 3393; Percent complete: 84.8%; Average loss: 2.5453 Iteration: 3394; Percent complete: 84.9%; Average loss: 2.8642 Iteration: 3395; Percent complete: 84.9%; Average loss: 2.8766 Iteration: 3396; Percent complete: 84.9%; Average loss: 2.7293 Iteration: 3397; Percent complete: 84.9%; Average loss: 2.7867 Iteration: 3398; Percent complete: 85.0%; Average loss: 2.5971 Iteration: 3399; Percent complete: 85.0%; Average loss: 2.8945 Iteration: 3400; Percent complete: 85.0%; Average loss: 2.6745 Iteration: 3401; Percent complete: 85.0%; Average loss: 2.7343 Iteration: 3402; Percent complete: 85.0%; Average loss: 3.0475 Iteration: 3403; Percent complete: 85.1%; Average loss: 2.7275 Iteration: 3404; Percent complete: 85.1%; Average loss: 2.6756 Iteration: 3405; Percent complete: 85.1%; Average loss: 3.1270 Iteration: 3406; Percent complete: 85.2%; Average loss: 2.7699 Iteration: 3407; Percent complete: 85.2%; Average loss: 2.6213 Iteration: 3408; Percent complete: 85.2%; Average loss: 2.7662 Iteration: 3409; Percent complete: 85.2%; Average loss: 2.6834 Iteration: 3410; Percent complete: 85.2%; Average loss: 2.8000 Iteration: 3411; Percent complete: 85.3%; Average loss: 2.6472 Iteration: 3412; Percent complete: 85.3%; Average loss: 2.7778 Iteration: 3413; Percent complete: 85.3%; Average loss: 2.7785 Iteration: 3414; Percent complete: 85.4%; Average loss: 2.6187 Iteration: 3415; Percent complete: 85.4%; Average loss: 2.9555 Iteration: 3416; Percent complete: 85.4%; Average loss: 2.4758 Iteration: 3417; Percent complete: 85.4%; Average loss: 2.8175 Iteration: 3418; Percent complete: 85.5%; Average loss: 2.6528 Iteration: 3419; Percent complete: 85.5%; Average loss: 2.7561 Iteration: 3420; Percent complete: 85.5%; Average loss: 2.6516 Iteration: 3421; Percent complete: 85.5%; Average loss: 2.6396 Iteration: 3422; Percent complete: 85.5%; Average loss: 2.7122 Iteration: 3423; Percent complete: 85.6%; Average loss: 2.7175 Iteration: 3424; Percent complete: 85.6%; Average loss: 2.9089 Iteration: 3425; Percent complete: 85.6%; Average loss: 2.7290 Iteration: 3426; Percent complete: 85.7%; Average loss: 2.7261 Iteration: 3427; Percent complete: 85.7%; Average loss: 2.7248 Iteration: 3428; Percent complete: 85.7%; Average loss: 2.7626 Iteration: 3429; Percent complete: 85.7%; Average loss: 2.6561 Iteration: 3430; Percent complete: 85.8%; Average loss: 2.6188 Iteration: 3431; Percent complete: 85.8%; Average loss: 2.9826 Iteration: 3432; Percent complete: 85.8%; Average loss: 2.8001 Iteration: 3433; Percent complete: 85.8%; Average loss: 2.8673 Iteration: 3434; Percent complete: 85.9%; Average loss: 2.8389 Iteration: 3435; Percent complete: 85.9%; Average loss: 2.6278 Iteration: 3436; Percent complete: 85.9%; Average loss: 2.8829 Iteration: 3437; Percent complete: 85.9%; Average loss: 2.9607 Iteration: 3438; Percent complete: 86.0%; Average loss: 2.7004 Iteration: 3439; Percent complete: 86.0%; Average loss: 2.6992 Iteration: 3440; Percent complete: 86.0%; Average loss: 2.8382 Iteration: 3441; Percent complete: 86.0%; Average loss: 2.7450 Iteration: 3442; Percent complete: 86.1%; Average loss: 2.5566 Iteration: 3443; Percent complete: 86.1%; Average loss: 2.6566 Iteration: 3444; Percent complete: 86.1%; Average loss: 3.0172 Iteration: 3445; Percent complete: 86.1%; Average loss: 2.8428 Iteration: 3446; Percent complete: 86.2%; Average loss: 2.7933 Iteration: 3447; Percent complete: 86.2%; Average loss: 2.9195 Iteration: 3448; Percent complete: 86.2%; Average loss: 2.7146 Iteration: 3449; Percent complete: 86.2%; Average loss: 2.7246 Iteration: 3450; Percent complete: 86.2%; Average loss: 2.8549 Iteration: 3451; Percent complete: 86.3%; Average loss: 3.0109 Iteration: 3452; Percent complete: 86.3%; Average loss: 2.5265 Iteration: 3453; Percent complete: 86.3%; Average loss: 2.6842 Iteration: 3454; Percent complete: 86.4%; Average loss: 2.5825 Iteration: 3455; Percent complete: 86.4%; Average loss: 2.6451 Iteration: 3456; Percent complete: 86.4%; Average loss: 2.5736 Iteration: 3457; Percent complete: 86.4%; Average loss: 2.6173 Iteration: 3458; Percent complete: 86.5%; Average loss: 2.9716 Iteration: 3459; Percent complete: 86.5%; Average loss: 2.5097 Iteration: 3460; Percent complete: 86.5%; Average loss: 2.6165 Iteration: 3461; Percent complete: 86.5%; Average loss: 2.7687 Iteration: 3462; Percent complete: 86.6%; Average loss: 2.8299 Iteration: 3463; Percent complete: 86.6%; Average loss: 2.7898 Iteration: 3464; Percent complete: 86.6%; Average loss: 2.6263 Iteration: 3465; Percent complete: 86.6%; Average loss: 2.7803 Iteration: 3466; Percent complete: 86.7%; Average loss: 2.9045 Iteration: 3467; Percent complete: 86.7%; Average loss: 2.7840 Iteration: 3468; Percent complete: 86.7%; Average loss: 2.6989 Iteration: 3469; Percent complete: 86.7%; Average loss: 2.4825 Iteration: 3470; Percent complete: 86.8%; Average loss: 2.8671 Iteration: 3471; Percent complete: 86.8%; Average loss: 2.8817 Iteration: 3472; Percent complete: 86.8%; Average loss: 2.6183 Iteration: 3473; Percent complete: 86.8%; Average loss: 2.9051 Iteration: 3474; Percent complete: 86.9%; Average loss: 2.6117 Iteration: 3475; Percent complete: 86.9%; Average loss: 2.4791 Iteration: 3476; Percent complete: 86.9%; Average loss: 2.7763 Iteration: 3477; Percent complete: 86.9%; Average loss: 2.7533 Iteration: 3478; Percent complete: 87.0%; Average loss: 2.8679 Iteration: 3479; Percent complete: 87.0%; Average loss: 2.7282 Iteration: 3480; Percent complete: 87.0%; Average loss: 2.7651 Iteration: 3481; Percent complete: 87.0%; Average loss: 2.8369 Iteration: 3482; Percent complete: 87.1%; Average loss: 2.6490 Iteration: 3483; Percent complete: 87.1%; Average loss: 2.6662 Iteration: 3484; Percent complete: 87.1%; Average loss: 2.6325 Iteration: 3485; Percent complete: 87.1%; Average loss: 2.8317 Iteration: 3486; Percent complete: 87.2%; Average loss: 2.8270 Iteration: 3487; Percent complete: 87.2%; Average loss: 2.8949 Iteration: 3488; Percent complete: 87.2%; Average loss: 2.6505 Iteration: 3489; Percent complete: 87.2%; Average loss: 2.9399 Iteration: 3490; Percent complete: 87.2%; Average loss: 2.8460 Iteration: 3491; Percent complete: 87.3%; Average loss: 2.5952 Iteration: 3492; Percent complete: 87.3%; Average loss: 2.6548 Iteration: 3493; Percent complete: 87.3%; Average loss: 2.4498 Iteration: 3494; Percent complete: 87.4%; Average loss: 2.8597 Iteration: 3495; Percent complete: 87.4%; Average loss: 2.8833 Iteration: 3496; Percent complete: 87.4%; Average loss: 2.9354 Iteration: 3497; Percent complete: 87.4%; Average loss: 2.5506 Iteration: 3498; Percent complete: 87.5%; Average loss: 2.9888 Iteration: 3499; Percent complete: 87.5%; Average loss: 2.7491 Iteration: 3500; Percent complete: 87.5%; Average loss: 2.6098 Iteration: 3501; Percent complete: 87.5%; Average loss: 2.7484 Iteration: 3502; Percent complete: 87.5%; Average loss: 2.7583 Iteration: 3503; Percent complete: 87.6%; Average loss: 2.9259 Iteration: 3504; Percent complete: 87.6%; Average loss: 2.7101 Iteration: 3505; Percent complete: 87.6%; Average loss: 3.0304 Iteration: 3506; Percent complete: 87.6%; Average loss: 2.9223 Iteration: 3507; Percent complete: 87.7%; Average loss: 2.8235 Iteration: 3508; Percent complete: 87.7%; Average loss: 2.6244 Iteration: 3509; Percent complete: 87.7%; Average loss: 3.0151 Iteration: 3510; Percent complete: 87.8%; Average loss: 2.7285 Iteration: 3511; Percent complete: 87.8%; Average loss: 2.6320 Iteration: 3512; Percent complete: 87.8%; Average loss: 2.5895 Iteration: 3513; Percent complete: 87.8%; Average loss: 2.7497 Iteration: 3514; Percent complete: 87.8%; Average loss: 2.8779 Iteration: 3515; Percent complete: 87.9%; Average loss: 2.8297 Iteration: 3516; Percent complete: 87.9%; Average loss: 2.6783 Iteration: 3517; Percent complete: 87.9%; Average loss: 2.7282 Iteration: 3518; Percent complete: 87.9%; Average loss: 2.6331 Iteration: 3519; Percent complete: 88.0%; Average loss: 2.7667 Iteration: 3520; Percent complete: 88.0%; Average loss: 2.7042 Iteration: 3521; Percent complete: 88.0%; Average loss: 2.9408 Iteration: 3522; Percent complete: 88.0%; Average loss: 2.6549 Iteration: 3523; Percent complete: 88.1%; Average loss: 2.7884 Iteration: 3524; Percent complete: 88.1%; Average loss: 2.7823 Iteration: 3525; Percent complete: 88.1%; Average loss: 2.6718 Iteration: 3526; Percent complete: 88.1%; Average loss: 3.0330 Iteration: 3527; Percent complete: 88.2%; Average loss: 2.6626 Iteration: 3528; Percent complete: 88.2%; Average loss: 2.8354 Iteration: 3529; Percent complete: 88.2%; Average loss: 2.6018 Iteration: 3530; Percent complete: 88.2%; Average loss: 2.4260 Iteration: 3531; Percent complete: 88.3%; Average loss: 2.7861 Iteration: 3532; Percent complete: 88.3%; Average loss: 2.5388 Iteration: 3533; Percent complete: 88.3%; Average loss: 2.7406 Iteration: 3534; Percent complete: 88.3%; Average loss: 2.7148 Iteration: 3535; Percent complete: 88.4%; Average loss: 2.8803 Iteration: 3536; Percent complete: 88.4%; Average loss: 2.8175 Iteration: 3537; Percent complete: 88.4%; Average loss: 2.7970 Iteration: 3538; Percent complete: 88.4%; Average loss: 2.7688 Iteration: 3539; Percent complete: 88.5%; Average loss: 2.8850 Iteration: 3540; Percent complete: 88.5%; Average loss: 2.8965 Iteration: 3541; Percent complete: 88.5%; Average loss: 2.7286 Iteration: 3542; Percent complete: 88.5%; Average loss: 2.7962 Iteration: 3543; Percent complete: 88.6%; Average loss: 2.7983 Iteration: 3544; Percent complete: 88.6%; Average loss: 2.7767 Iteration: 3545; Percent complete: 88.6%; Average loss: 2.7890 Iteration: 3546; Percent complete: 88.6%; Average loss: 2.8177 Iteration: 3547; Percent complete: 88.7%; Average loss: 2.5810 Iteration: 3548; Percent complete: 88.7%; Average loss: 2.8080 Iteration: 3549; Percent complete: 88.7%; Average loss: 2.8098 Iteration: 3550; Percent complete: 88.8%; Average loss: 2.7285 Iteration: 3551; Percent complete: 88.8%; Average loss: 2.6452 Iteration: 3552; Percent complete: 88.8%; Average loss: 2.6301 Iteration: 3553; Percent complete: 88.8%; Average loss: 2.9311 Iteration: 3554; Percent complete: 88.8%; Average loss: 2.7128 Iteration: 3555; Percent complete: 88.9%; Average loss: 2.9755 Iteration: 3556; Percent complete: 88.9%; Average loss: 2.7340 Iteration: 3557; Percent complete: 88.9%; Average loss: 2.6253 Iteration: 3558; Percent complete: 88.9%; Average loss: 2.5933 Iteration: 3559; Percent complete: 89.0%; Average loss: 2.7707 Iteration: 3560; Percent complete: 89.0%; Average loss: 2.6808 Iteration: 3561; Percent complete: 89.0%; Average loss: 2.6710 Iteration: 3562; Percent complete: 89.0%; Average loss: 2.8342 Iteration: 3563; Percent complete: 89.1%; Average loss: 2.7183 Iteration: 3564; Percent complete: 89.1%; Average loss: 2.6335 Iteration: 3565; Percent complete: 89.1%; Average loss: 3.0404 Iteration: 3566; Percent complete: 89.1%; Average loss: 2.5259 Iteration: 3567; Percent complete: 89.2%; Average loss: 2.5919 Iteration: 3568; Percent complete: 89.2%; Average loss: 2.7164 Iteration: 3569; Percent complete: 89.2%; Average loss: 2.6692 Iteration: 3570; Percent complete: 89.2%; Average loss: 2.6298 Iteration: 3571; Percent complete: 89.3%; Average loss: 2.7264 Iteration: 3572; Percent complete: 89.3%; Average loss: 2.6792 Iteration: 3573; Percent complete: 89.3%; Average loss: 2.7538 Iteration: 3574; Percent complete: 89.3%; Average loss: 2.5564 Iteration: 3575; Percent complete: 89.4%; Average loss: 2.9950 Iteration: 3576; Percent complete: 89.4%; Average loss: 2.5450 Iteration: 3577; Percent complete: 89.4%; Average loss: 2.7532 Iteration: 3578; Percent complete: 89.5%; Average loss: 2.8368 Iteration: 3579; Percent complete: 89.5%; Average loss: 2.7717 Iteration: 3580; Percent complete: 89.5%; Average loss: 2.6891 Iteration: 3581; Percent complete: 89.5%; Average loss: 2.6899 Iteration: 3582; Percent complete: 89.5%; Average loss: 2.7133 Iteration: 3583; Percent complete: 89.6%; Average loss: 2.6759 Iteration: 3584; Percent complete: 89.6%; Average loss: 3.1654 Iteration: 3585; Percent complete: 89.6%; Average loss: 2.8263 Iteration: 3586; Percent complete: 89.6%; Average loss: 2.5629 Iteration: 3587; Percent complete: 89.7%; Average loss: 2.8451 Iteration: 3588; Percent complete: 89.7%; Average loss: 2.7120 Iteration: 3589; Percent complete: 89.7%; Average loss: 2.6822 Iteration: 3590; Percent complete: 89.8%; Average loss: 2.6553 Iteration: 3591; Percent complete: 89.8%; Average loss: 2.5816 Iteration: 3592; Percent complete: 89.8%; Average loss: 2.5425 Iteration: 3593; Percent complete: 89.8%; Average loss: 2.6392 Iteration: 3594; Percent complete: 89.8%; Average loss: 2.9046 Iteration: 3595; Percent complete: 89.9%; Average loss: 2.5345 Iteration: 3596; Percent complete: 89.9%; Average loss: 2.7180 Iteration: 3597; Percent complete: 89.9%; Average loss: 2.5846 Iteration: 3598; Percent complete: 90.0%; Average loss: 2.5512 Iteration: 3599; Percent complete: 90.0%; Average loss: 2.7010 Iteration: 3600; Percent complete: 90.0%; Average loss: 3.0636 Iteration: 3601; Percent complete: 90.0%; Average loss: 2.5631 Iteration: 3602; Percent complete: 90.0%; Average loss: 2.6332 Iteration: 3603; Percent complete: 90.1%; Average loss: 2.6881 Iteration: 3604; Percent complete: 90.1%; Average loss: 2.4466 Iteration: 3605; Percent complete: 90.1%; Average loss: 2.7335 Iteration: 3606; Percent complete: 90.1%; Average loss: 2.8093 Iteration: 3607; Percent complete: 90.2%; Average loss: 2.5595 Iteration: 3608; Percent complete: 90.2%; Average loss: 2.6660 Iteration: 3609; Percent complete: 90.2%; Average loss: 2.8605 Iteration: 3610; Percent complete: 90.2%; Average loss: 2.8959 Iteration: 3611; Percent complete: 90.3%; Average loss: 2.7033 Iteration: 3612; Percent complete: 90.3%; Average loss: 2.7288 Iteration: 3613; Percent complete: 90.3%; Average loss: 2.6413 Iteration: 3614; Percent complete: 90.3%; Average loss: 2.7965 Iteration: 3615; Percent complete: 90.4%; Average loss: 2.6942 Iteration: 3616; Percent complete: 90.4%; Average loss: 2.7668 Iteration: 3617; Percent complete: 90.4%; Average loss: 2.5752 Iteration: 3618; Percent complete: 90.5%; Average loss: 2.6659 Iteration: 3619; Percent complete: 90.5%; Average loss: 2.6933 Iteration: 3620; Percent complete: 90.5%; Average loss: 2.5611 Iteration: 3621; Percent complete: 90.5%; Average loss: 3.0648 Iteration: 3622; Percent complete: 90.5%; Average loss: 2.7047 Iteration: 3623; Percent complete: 90.6%; Average loss: 2.9099 Iteration: 3624; Percent complete: 90.6%; Average loss: 2.6764 Iteration: 3625; Percent complete: 90.6%; Average loss: 2.8216 Iteration: 3626; Percent complete: 90.6%; Average loss: 2.7113 Iteration: 3627; Percent complete: 90.7%; Average loss: 2.7721 Iteration: 3628; Percent complete: 90.7%; Average loss: 2.8352 Iteration: 3629; Percent complete: 90.7%; Average loss: 2.8469 Iteration: 3630; Percent complete: 90.8%; Average loss: 2.6003 Iteration: 3631; Percent complete: 90.8%; Average loss: 2.7505 Iteration: 3632; Percent complete: 90.8%; Average loss: 2.7533 Iteration: 3633; Percent complete: 90.8%; Average loss: 2.7271 Iteration: 3634; Percent complete: 90.8%; Average loss: 2.6912 Iteration: 3635; Percent complete: 90.9%; Average loss: 2.5957 Iteration: 3636; Percent complete: 90.9%; Average loss: 2.6553 Iteration: 3637; Percent complete: 90.9%; Average loss: 2.8763 Iteration: 3638; Percent complete: 91.0%; Average loss: 2.7620 Iteration: 3639; Percent complete: 91.0%; Average loss: 2.7566 Iteration: 3640; Percent complete: 91.0%; Average loss: 2.7553 Iteration: 3641; Percent complete: 91.0%; Average loss: 2.7168 Iteration: 3642; Percent complete: 91.0%; Average loss: 2.5739 Iteration: 3643; Percent complete: 91.1%; Average loss: 2.8317 Iteration: 3644; Percent complete: 91.1%; Average loss: 2.6006 Iteration: 3645; Percent complete: 91.1%; Average loss: 2.7783 Iteration: 3646; Percent complete: 91.1%; Average loss: 2.8809 Iteration: 3647; Percent complete: 91.2%; Average loss: 2.8345 Iteration: 3648; Percent complete: 91.2%; Average loss: 2.7313 Iteration: 3649; Percent complete: 91.2%; Average loss: 2.4553 Iteration: 3650; Percent complete: 91.2%; Average loss: 2.7084 Iteration: 3651; Percent complete: 91.3%; Average loss: 2.9541 Iteration: 3652; Percent complete: 91.3%; Average loss: 2.4919 Iteration: 3653; Percent complete: 91.3%; Average loss: 2.7910 Iteration: 3654; Percent complete: 91.3%; Average loss: 2.6556 Iteration: 3655; Percent complete: 91.4%; Average loss: 2.8182 Iteration: 3656; Percent complete: 91.4%; Average loss: 2.8210 Iteration: 3657; Percent complete: 91.4%; Average loss: 2.7806 Iteration: 3658; Percent complete: 91.5%; Average loss: 2.7353 Iteration: 3659; Percent complete: 91.5%; Average loss: 2.5814 Iteration: 3660; Percent complete: 91.5%; Average loss: 2.7366 Iteration: 3661; Percent complete: 91.5%; Average loss: 2.4612 Iteration: 3662; Percent complete: 91.5%; Average loss: 2.7222 Iteration: 3663; Percent complete: 91.6%; Average loss: 2.7802 Iteration: 3664; Percent complete: 91.6%; Average loss: 2.5618 Iteration: 3665; Percent complete: 91.6%; Average loss: 2.5207 Iteration: 3666; Percent complete: 91.6%; Average loss: 2.9349 Iteration: 3667; Percent complete: 91.7%; Average loss: 2.7211 Iteration: 3668; Percent complete: 91.7%; Average loss: 2.9431 Iteration: 3669; Percent complete: 91.7%; Average loss: 2.7110 Iteration: 3670; Percent complete: 91.8%; Average loss: 2.8495 Iteration: 3671; Percent complete: 91.8%; Average loss: 2.5534 Iteration: 3672; Percent complete: 91.8%; Average loss: 2.6418 Iteration: 3673; Percent complete: 91.8%; Average loss: 2.7975 Iteration: 3674; Percent complete: 91.8%; Average loss: 2.4806 Iteration: 3675; Percent complete: 91.9%; Average loss: 2.8649 Iteration: 3676; Percent complete: 91.9%; Average loss: 2.8258 Iteration: 3677; Percent complete: 91.9%; Average loss: 2.6447 Iteration: 3678; Percent complete: 92.0%; Average loss: 2.7269 Iteration: 3679; Percent complete: 92.0%; Average loss: 2.6160 Iteration: 3680; Percent complete: 92.0%; Average loss: 2.7813 Iteration: 3681; Percent complete: 92.0%; Average loss: 2.7638 Iteration: 3682; Percent complete: 92.0%; Average loss: 2.9787 Iteration: 3683; Percent complete: 92.1%; Average loss: 2.5334 Iteration: 3684; Percent complete: 92.1%; Average loss: 2.7309 Iteration: 3685; Percent complete: 92.1%; Average loss: 2.7943 Iteration: 3686; Percent complete: 92.2%; Average loss: 2.7994 Iteration: 3687; Percent complete: 92.2%; Average loss: 2.5590 Iteration: 3688; Percent complete: 92.2%; Average loss: 2.7950 Iteration: 3689; Percent complete: 92.2%; Average loss: 2.6309 Iteration: 3690; Percent complete: 92.2%; Average loss: 2.6755 Iteration: 3691; Percent complete: 92.3%; Average loss: 2.5779 Iteration: 3692; Percent complete: 92.3%; Average loss: 2.6282 Iteration: 3693; Percent complete: 92.3%; Average loss: 2.7854 Iteration: 3694; Percent complete: 92.3%; Average loss: 2.7399 Iteration: 3695; Percent complete: 92.4%; Average loss: 2.6267 Iteration: 3696; Percent complete: 92.4%; Average loss: 2.7961 Iteration: 3697; Percent complete: 92.4%; Average loss: 2.6914 Iteration: 3698; Percent complete: 92.5%; Average loss: 2.7563 Iteration: 3699; Percent complete: 92.5%; Average loss: 2.8554 Iteration: 3700; Percent complete: 92.5%; Average loss: 2.8392 Iteration: 3701; Percent complete: 92.5%; Average loss: 2.8365 Iteration: 3702; Percent complete: 92.5%; Average loss: 2.8429 Iteration: 3703; Percent complete: 92.6%; Average loss: 2.6667 Iteration: 3704; Percent complete: 92.6%; Average loss: 2.5894 Iteration: 3705; Percent complete: 92.6%; Average loss: 2.8826 Iteration: 3706; Percent complete: 92.7%; Average loss: 2.6455 Iteration: 3707; Percent complete: 92.7%; Average loss: 2.9721 Iteration: 3708; Percent complete: 92.7%; Average loss: 2.7460 Iteration: 3709; Percent complete: 92.7%; Average loss: 2.6496 Iteration: 3710; Percent complete: 92.8%; Average loss: 2.6939 Iteration: 3711; Percent complete: 92.8%; Average loss: 2.5466 Iteration: 3712; Percent complete: 92.8%; Average loss: 2.8015 Iteration: 3713; Percent complete: 92.8%; Average loss: 2.9051 Iteration: 3714; Percent complete: 92.8%; Average loss: 2.6275 Iteration: 3715; Percent complete: 92.9%; Average loss: 2.5996 Iteration: 3716; Percent complete: 92.9%; Average loss: 2.6629 Iteration: 3717; Percent complete: 92.9%; Average loss: 2.6437 Iteration: 3718; Percent complete: 93.0%; Average loss: 2.8600 Iteration: 3719; Percent complete: 93.0%; Average loss: 2.6187 Iteration: 3720; Percent complete: 93.0%; Average loss: 2.8413 Iteration: 3721; Percent complete: 93.0%; Average loss: 2.6694 Iteration: 3722; Percent complete: 93.0%; Average loss: 2.6913 Iteration: 3723; Percent complete: 93.1%; Average loss: 2.9676 Iteration: 3724; Percent complete: 93.1%; Average loss: 2.7764 Iteration: 3725; Percent complete: 93.1%; Average loss: 2.7188 Iteration: 3726; Percent complete: 93.2%; Average loss: 2.5788 Iteration: 3727; Percent complete: 93.2%; Average loss: 2.6990 Iteration: 3728; Percent complete: 93.2%; Average loss: 2.6627 Iteration: 3729; Percent complete: 93.2%; Average loss: 2.5782 Iteration: 3730; Percent complete: 93.2%; Average loss: 2.8155 Iteration: 3731; Percent complete: 93.3%; Average loss: 2.7005 Iteration: 3732; Percent complete: 93.3%; Average loss: 2.7010 Iteration: 3733; Percent complete: 93.3%; Average loss: 2.6195 Iteration: 3734; Percent complete: 93.3%; Average loss: 2.5604 Iteration: 3735; Percent complete: 93.4%; Average loss: 2.7015 Iteration: 3736; Percent complete: 93.4%; Average loss: 2.7595 Iteration: 3737; Percent complete: 93.4%; Average loss: 2.8485 Iteration: 3738; Percent complete: 93.5%; Average loss: 2.7185 Iteration: 3739; Percent complete: 93.5%; Average loss: 2.6930 Iteration: 3740; Percent complete: 93.5%; Average loss: 2.7103 Iteration: 3741; Percent complete: 93.5%; Average loss: 2.8657 Iteration: 3742; Percent complete: 93.5%; Average loss: 2.6119 Iteration: 3743; Percent complete: 93.6%; Average loss: 2.8607 Iteration: 3744; Percent complete: 93.6%; Average loss: 2.5800 Iteration: 3745; Percent complete: 93.6%; Average loss: 2.8363 Iteration: 3746; Percent complete: 93.7%; Average loss: 2.5875 Iteration: 3747; Percent complete: 93.7%; Average loss: 2.5752 Iteration: 3748; Percent complete: 93.7%; Average loss: 2.6814 Iteration: 3749; Percent complete: 93.7%; Average loss: 2.7077 Iteration: 3750; Percent complete: 93.8%; Average loss: 2.5988 Iteration: 3751; Percent complete: 93.8%; Average loss: 2.5683 Iteration: 3752; Percent complete: 93.8%; Average loss: 2.7710 Iteration: 3753; Percent complete: 93.8%; Average loss: 2.6249 Iteration: 3754; Percent complete: 93.8%; Average loss: 2.6297 Iteration: 3755; Percent complete: 93.9%; Average loss: 2.5990 Iteration: 3756; Percent complete: 93.9%; Average loss: 2.5091 Iteration: 3757; Percent complete: 93.9%; Average loss: 2.9211 Iteration: 3758; Percent complete: 94.0%; Average loss: 2.6649 Iteration: 3759; Percent complete: 94.0%; Average loss: 2.6442 Iteration: 3760; Percent complete: 94.0%; Average loss: 2.7243 Iteration: 3761; Percent complete: 94.0%; Average loss: 2.6590 Iteration: 3762; Percent complete: 94.0%; Average loss: 2.5557 Iteration: 3763; Percent complete: 94.1%; Average loss: 2.7739 Iteration: 3764; Percent complete: 94.1%; Average loss: 2.7095 Iteration: 3765; Percent complete: 94.1%; Average loss: 2.6305 Iteration: 3766; Percent complete: 94.2%; Average loss: 2.8458 Iteration: 3767; Percent complete: 94.2%; Average loss: 2.6613 Iteration: 3768; Percent complete: 94.2%; Average loss: 2.7017 Iteration: 3769; Percent complete: 94.2%; Average loss: 2.6428 Iteration: 3770; Percent complete: 94.2%; Average loss: 2.6637 Iteration: 3771; Percent complete: 94.3%; Average loss: 2.5937 Iteration: 3772; Percent complete: 94.3%; Average loss: 2.4131 Iteration: 3773; Percent complete: 94.3%; Average loss: 2.8645 Iteration: 3774; Percent complete: 94.3%; Average loss: 2.7898 Iteration: 3775; Percent complete: 94.4%; Average loss: 2.7606 Iteration: 3776; Percent complete: 94.4%; Average loss: 2.7026 Iteration: 3777; Percent complete: 94.4%; Average loss: 2.5451 Iteration: 3778; Percent complete: 94.5%; Average loss: 2.7570 Iteration: 3779; Percent complete: 94.5%; Average loss: 2.5045 Iteration: 3780; Percent complete: 94.5%; Average loss: 2.6421 Iteration: 3781; Percent complete: 94.5%; Average loss: 2.8060 Iteration: 3782; Percent complete: 94.5%; Average loss: 2.6214 Iteration: 3783; Percent complete: 94.6%; Average loss: 2.7661 Iteration: 3784; Percent complete: 94.6%; Average loss: 2.5366 Iteration: 3785; Percent complete: 94.6%; Average loss: 2.8299 Iteration: 3786; Percent complete: 94.7%; Average loss: 2.7520 Iteration: 3787; Percent complete: 94.7%; Average loss: 2.5595 Iteration: 3788; Percent complete: 94.7%; Average loss: 2.8262 Iteration: 3789; Percent complete: 94.7%; Average loss: 2.7692 Iteration: 3790; Percent complete: 94.8%; Average loss: 2.6270 Iteration: 3791; Percent complete: 94.8%; Average loss: 2.7382 Iteration: 3792; Percent complete: 94.8%; Average loss: 2.5666 Iteration: 3793; Percent complete: 94.8%; Average loss: 2.4817 Iteration: 3794; Percent complete: 94.8%; Average loss: 2.7184 Iteration: 3795; Percent complete: 94.9%; Average loss: 2.8149 Iteration: 3796; Percent complete: 94.9%; Average loss: 2.8622 Iteration: 3797; Percent complete: 94.9%; Average loss: 2.7035 Iteration: 3798; Percent complete: 95.0%; Average loss: 2.8207 Iteration: 3799; Percent complete: 95.0%; Average loss: 2.8682 Iteration: 3800; Percent complete: 95.0%; Average loss: 2.8237 Iteration: 3801; Percent complete: 95.0%; Average loss: 2.6842 Iteration: 3802; Percent complete: 95.0%; Average loss: 2.6905 Iteration: 3803; Percent complete: 95.1%; Average loss: 2.5934 Iteration: 3804; Percent complete: 95.1%; Average loss: 2.5199 Iteration: 3805; Percent complete: 95.1%; Average loss: 2.6770 Iteration: 3806; Percent complete: 95.2%; Average loss: 3.0834 Iteration: 3807; Percent complete: 95.2%; Average loss: 2.8305 Iteration: 3808; Percent complete: 95.2%; Average loss: 2.6028 Iteration: 3809; Percent complete: 95.2%; Average loss: 2.4803 Iteration: 3810; Percent complete: 95.2%; Average loss: 2.4066 Iteration: 3811; Percent complete: 95.3%; Average loss: 2.5371 Iteration: 3812; Percent complete: 95.3%; Average loss: 2.5754 Iteration: 3813; Percent complete: 95.3%; Average loss: 2.5007 Iteration: 3814; Percent complete: 95.3%; Average loss: 2.6370 Iteration: 3815; Percent complete: 95.4%; Average loss: 3.0007 Iteration: 3816; Percent complete: 95.4%; Average loss: 2.6367 Iteration: 3817; Percent complete: 95.4%; Average loss: 2.6426 Iteration: 3818; Percent complete: 95.5%; Average loss: 2.5467 Iteration: 3819; Percent complete: 95.5%; Average loss: 2.5892 Iteration: 3820; Percent complete: 95.5%; Average loss: 2.7300 Iteration: 3821; Percent complete: 95.5%; Average loss: 2.6276 Iteration: 3822; Percent complete: 95.5%; Average loss: 2.7444 Iteration: 3823; Percent complete: 95.6%; Average loss: 2.5706 Iteration: 3824; Percent complete: 95.6%; Average loss: 2.6866 Iteration: 3825; Percent complete: 95.6%; Average loss: 2.7698 Iteration: 3826; Percent complete: 95.7%; Average loss: 2.8578 Iteration: 3827; Percent complete: 95.7%; Average loss: 2.7447 Iteration: 3828; Percent complete: 95.7%; Average loss: 2.4911 Iteration: 3829; Percent complete: 95.7%; Average loss: 2.5625 Iteration: 3830; Percent complete: 95.8%; Average loss: 2.6686 Iteration: 3831; Percent complete: 95.8%; Average loss: 2.7364 Iteration: 3832; Percent complete: 95.8%; Average loss: 2.7239 Iteration: 3833; Percent complete: 95.8%; Average loss: 2.7683 Iteration: 3834; Percent complete: 95.9%; Average loss: 2.5581 Iteration: 3835; Percent complete: 95.9%; Average loss: 2.7130 Iteration: 3836; Percent complete: 95.9%; Average loss: 2.7972 Iteration: 3837; Percent complete: 95.9%; Average loss: 2.5828 Iteration: 3838; Percent complete: 96.0%; Average loss: 2.5633 Iteration: 3839; Percent complete: 96.0%; Average loss: 2.4261 Iteration: 3840; Percent complete: 96.0%; Average loss: 2.9840 Iteration: 3841; Percent complete: 96.0%; Average loss: 2.4329 Iteration: 3842; Percent complete: 96.0%; Average loss: 2.6928 Iteration: 3843; Percent complete: 96.1%; Average loss: 2.5364 Iteration: 3844; Percent complete: 96.1%; Average loss: 2.6908 Iteration: 3845; Percent complete: 96.1%; Average loss: 2.9373 Iteration: 3846; Percent complete: 96.2%; Average loss: 2.6543 Iteration: 3847; Percent complete: 96.2%; Average loss: 2.4652 Iteration: 3848; Percent complete: 96.2%; Average loss: 2.8194 Iteration: 3849; Percent complete: 96.2%; Average loss: 2.5504 Iteration: 3850; Percent complete: 96.2%; Average loss: 2.7144 Iteration: 3851; Percent complete: 96.3%; Average loss: 2.5757 Iteration: 3852; Percent complete: 96.3%; Average loss: 2.5649 Iteration: 3853; Percent complete: 96.3%; Average loss: 2.8861 Iteration: 3854; Percent complete: 96.4%; Average loss: 2.7625 Iteration: 3855; Percent complete: 96.4%; Average loss: 2.4959 Iteration: 3856; Percent complete: 96.4%; Average loss: 2.5341 Iteration: 3857; Percent complete: 96.4%; Average loss: 2.7399 Iteration: 3858; Percent complete: 96.5%; Average loss: 2.8401 Iteration: 3859; Percent complete: 96.5%; Average loss: 2.7785 Iteration: 3860; Percent complete: 96.5%; Average loss: 2.3554 Iteration: 3861; Percent complete: 96.5%; Average loss: 2.7272 Iteration: 3862; Percent complete: 96.5%; Average loss: 2.6660 Iteration: 3863; Percent complete: 96.6%; Average loss: 2.6256 Iteration: 3864; Percent complete: 96.6%; Average loss: 2.6408 Iteration: 3865; Percent complete: 96.6%; Average loss: 2.7654 Iteration: 3866; Percent complete: 96.7%; Average loss: 2.5126 Iteration: 3867; Percent complete: 96.7%; Average loss: 2.4345 Iteration: 3868; Percent complete: 96.7%; Average loss: 2.3693 Iteration: 3869; Percent complete: 96.7%; Average loss: 2.6644 Iteration: 3870; Percent complete: 96.8%; Average loss: 2.4808 Iteration: 3871; Percent complete: 96.8%; Average loss: 2.5966 Iteration: 3872; Percent complete: 96.8%; Average loss: 2.9151 Iteration: 3873; Percent complete: 96.8%; Average loss: 2.4610 Iteration: 3874; Percent complete: 96.9%; Average loss: 2.4201 Iteration: 3875; Percent complete: 96.9%; Average loss: 2.6686 Iteration: 3876; Percent complete: 96.9%; Average loss: 2.5236 Iteration: 3877; Percent complete: 96.9%; Average loss: 2.6586 Iteration: 3878; Percent complete: 97.0%; Average loss: 2.9590 Iteration: 3879; Percent complete: 97.0%; Average loss: 2.4302 Iteration: 3880; Percent complete: 97.0%; Average loss: 2.6391 Iteration: 3881; Percent complete: 97.0%; Average loss: 2.7817 Iteration: 3882; Percent complete: 97.0%; Average loss: 2.4755 Iteration: 3883; Percent complete: 97.1%; Average loss: 2.6718 Iteration: 3884; Percent complete: 97.1%; Average loss: 2.4861 Iteration: 3885; Percent complete: 97.1%; Average loss: 2.7285 Iteration: 3886; Percent complete: 97.2%; Average loss: 2.5305 Iteration: 3887; Percent complete: 97.2%; Average loss: 2.7437 Iteration: 3888; Percent complete: 97.2%; Average loss: 2.5581 Iteration: 3889; Percent complete: 97.2%; Average loss: 2.4240 Iteration: 3890; Percent complete: 97.2%; Average loss: 2.7892 Iteration: 3891; Percent complete: 97.3%; Average loss: 2.4825 Iteration: 3892; Percent complete: 97.3%; Average loss: 2.7610 Iteration: 3893; Percent complete: 97.3%; Average loss: 2.6128 Iteration: 3894; Percent complete: 97.4%; Average loss: 2.6241 Iteration: 3895; Percent complete: 97.4%; Average loss: 2.5221 Iteration: 3896; Percent complete: 97.4%; Average loss: 2.6023 Iteration: 3897; Percent complete: 97.4%; Average loss: 2.5605 Iteration: 3898; Percent complete: 97.5%; Average loss: 2.8383 Iteration: 3899; Percent complete: 97.5%; Average loss: 2.6867 Iteration: 3900; Percent complete: 97.5%; Average loss: 2.6954 Iteration: 3901; Percent complete: 97.5%; Average loss: 2.9551 Iteration: 3902; Percent complete: 97.5%; Average loss: 2.7275 Iteration: 3903; Percent complete: 97.6%; Average loss: 2.5986 Iteration: 3904; Percent complete: 97.6%; Average loss: 2.8466 Iteration: 3905; Percent complete: 97.6%; Average loss: 2.7360 Iteration: 3906; Percent complete: 97.7%; Average loss: 2.5660 Iteration: 3907; Percent complete: 97.7%; Average loss: 2.6321 Iteration: 3908; Percent complete: 97.7%; Average loss: 2.5921 Iteration: 3909; Percent complete: 97.7%; Average loss: 2.7634 Iteration: 3910; Percent complete: 97.8%; Average loss: 2.6278 Iteration: 3911; Percent complete: 97.8%; Average loss: 2.5330 Iteration: 3912; Percent complete: 97.8%; Average loss: 2.5203 Iteration: 3913; Percent complete: 97.8%; Average loss: 2.8304 Iteration: 3914; Percent complete: 97.9%; Average loss: 2.7509 Iteration: 3915; Percent complete: 97.9%; Average loss: 2.6143 Iteration: 3916; Percent complete: 97.9%; Average loss: 2.5132 Iteration: 3917; Percent complete: 97.9%; Average loss: 2.7283 Iteration: 3918; Percent complete: 98.0%; Average loss: 2.7983 Iteration: 3919; Percent complete: 98.0%; Average loss: 2.6531 Iteration: 3920; Percent complete: 98.0%; Average loss: 2.9959 Iteration: 3921; Percent complete: 98.0%; Average loss: 2.6197 Iteration: 3922; Percent complete: 98.0%; Average loss: 2.5391 Iteration: 3923; Percent complete: 98.1%; Average loss: 2.5306 Iteration: 3924; Percent complete: 98.1%; Average loss: 2.6708 Iteration: 3925; Percent complete: 98.1%; Average loss: 2.8038 Iteration: 3926; Percent complete: 98.2%; Average loss: 2.5462 Iteration: 3927; Percent complete: 98.2%; Average loss: 2.5932 Iteration: 3928; Percent complete: 98.2%; Average loss: 2.5263 Iteration: 3929; Percent complete: 98.2%; Average loss: 2.7180 Iteration: 3930; Percent complete: 98.2%; Average loss: 2.6819 Iteration: 3931; Percent complete: 98.3%; Average loss: 2.5960 Iteration: 3932; Percent complete: 98.3%; Average loss: 2.6368 Iteration: 3933; Percent complete: 98.3%; Average loss: 2.7104 Iteration: 3934; Percent complete: 98.4%; Average loss: 2.5781 Iteration: 3935; Percent complete: 98.4%; Average loss: 2.4760 Iteration: 3936; Percent complete: 98.4%; Average loss: 2.6243 Iteration: 3937; Percent complete: 98.4%; Average loss: 3.0587 Iteration: 3938; Percent complete: 98.5%; Average loss: 2.4542 Iteration: 3939; Percent complete: 98.5%; Average loss: 2.4842 Iteration: 3940; Percent complete: 98.5%; Average loss: 2.9324 Iteration: 3941; Percent complete: 98.5%; Average loss: 2.6023 Iteration: 3942; Percent complete: 98.6%; Average loss: 2.5699 Iteration: 3943; Percent complete: 98.6%; Average loss: 2.5725 Iteration: 3944; Percent complete: 98.6%; Average loss: 2.5354 Iteration: 3945; Percent complete: 98.6%; Average loss: 2.6709 Iteration: 3946; Percent complete: 98.7%; Average loss: 2.6047 Iteration: 3947; Percent complete: 98.7%; Average loss: 2.7458 Iteration: 3948; Percent complete: 98.7%; Average loss: 2.3845 Iteration: 3949; Percent complete: 98.7%; Average loss: 2.7017 Iteration: 3950; Percent complete: 98.8%; Average loss: 2.7932 Iteration: 3951; Percent complete: 98.8%; Average loss: 2.6110 Iteration: 3952; Percent complete: 98.8%; Average loss: 2.7973 Iteration: 3953; Percent complete: 98.8%; Average loss: 2.4332 Iteration: 3954; Percent complete: 98.9%; Average loss: 2.6172 Iteration: 3955; Percent complete: 98.9%; Average loss: 2.8037 Iteration: 3956; Percent complete: 98.9%; Average loss: 2.7974 Iteration: 3957; Percent complete: 98.9%; Average loss: 2.6918 Iteration: 3958; Percent complete: 99.0%; Average loss: 2.7703 Iteration: 3959; Percent complete: 99.0%; Average loss: 2.5863 Iteration: 3960; Percent complete: 99.0%; Average loss: 2.4469 Iteration: 3961; Percent complete: 99.0%; Average loss: 2.7529 Iteration: 3962; Percent complete: 99.1%; Average loss: 2.4848 Iteration: 3963; Percent complete: 99.1%; Average loss: 2.5866 Iteration: 3964; Percent complete: 99.1%; Average loss: 2.5649 Iteration: 3965; Percent complete: 99.1%; Average loss: 2.7373 Iteration: 3966; Percent complete: 99.2%; Average loss: 2.4828 Iteration: 3967; Percent complete: 99.2%; Average loss: 2.7134 Iteration: 3968; Percent complete: 99.2%; Average loss: 2.7393 Iteration: 3969; Percent complete: 99.2%; Average loss: 2.4111 Iteration: 3970; Percent complete: 99.2%; Average loss: 2.7646 Iteration: 3971; Percent complete: 99.3%; Average loss: 2.5467 Iteration: 3972; Percent complete: 99.3%; Average loss: 2.5964 Iteration: 3973; Percent complete: 99.3%; Average loss: 2.4795 Iteration: 3974; Percent complete: 99.4%; Average loss: 2.9199 Iteration: 3975; Percent complete: 99.4%; Average loss: 2.8328 Iteration: 3976; Percent complete: 99.4%; Average loss: 2.3931 Iteration: 3977; Percent complete: 99.4%; Average loss: 2.6231 Iteration: 3978; Percent complete: 99.5%; Average loss: 2.5572 Iteration: 3979; Percent complete: 99.5%; Average loss: 2.8275 Iteration: 3980; Percent complete: 99.5%; Average loss: 2.5213 Iteration: 3981; Percent complete: 99.5%; Average loss: 2.7527 Iteration: 3982; Percent complete: 99.6%; Average loss: 2.6679 Iteration: 3983; Percent complete: 99.6%; Average loss: 2.8183 Iteration: 3984; Percent complete: 99.6%; Average loss: 2.8614 Iteration: 3985; Percent complete: 99.6%; Average loss: 2.6987 Iteration: 3986; Percent complete: 99.7%; Average loss: 2.5570 Iteration: 3987; Percent complete: 99.7%; Average loss: 2.6784 Iteration: 3988; Percent complete: 99.7%; Average loss: 2.5042 Iteration: 3989; Percent complete: 99.7%; Average loss: 2.6452 Iteration: 3990; Percent complete: 99.8%; Average loss: 2.5970 Iteration: 3991; Percent complete: 99.8%; Average loss: 2.6767 Iteration: 3992; Percent complete: 99.8%; Average loss: 2.6095 Iteration: 3993; Percent complete: 99.8%; Average loss: 2.7266 Iteration: 3994; Percent complete: 99.9%; Average loss: 2.7654 Iteration: 3995; Percent complete: 99.9%; Average loss: 2.6808 Iteration: 3996; Percent complete: 99.9%; Average loss: 2.6709 Iteration: 3997; Percent complete: 99.9%; Average loss: 2.6427 Iteration: 3998; Percent complete: 100.0%; Average loss: 2.5011 Iteration: 3999; Percent complete: 100.0%; Average loss: 2.7171 Iteration: 4000; Percent complete: 100.0%; Average loss: 2.5403
評価を実行する
モデルとチャットするには、次のブロックを実行します。
# Set dropout layers to eval mode encoder.eval() decoder.eval() # Initialize search module searcher = GreedySearchDecoder(encoder, decoder) # Begin chatting (uncomment and run the following line to begin) # evaluateInput(encoder, decoder, searcher, voc)
終わりに
That’s all for this one, folks. Congratulations, 貴方は今では生成チャットボット・モデルを構築するための基礎を知っています!もし興味があれば、モデルを捻り、パラメータを訓練し、そして (その上で) モデルを訓練したデータをカスタマイズすることによりチャットボットの挙動を適合させてみることができます。
以上